227 research outputs found

    Regulation of Cancer Stem Cells: Lysine Methylation of p53

    Full text link
    The highly studied p53 protein regulates multiple transitions through the cell cycle effectively halting the growth of tumorlike masses.[1] This gene was primitively identified an oncogene; however, it was later derived that p53 functions as a tumor suppressor.[1] Named due to its mass in kDa, p53 is a phosphoprotein comprised of 393 amino acids.[1] Normal cells contain controlled, small quantities of p53 in order to facilitate the regulation of normal cell activities such as growth arrest, senescence,DNArepair, and apoptosis.[1,2] These features are pivotal the continuation of healthy cell production. Constructively, the functions of p53 work together to pause the cell growth cycles in order to address and repair certain sequences of DNA if needed before cell division commences. If repair cannot be completed, then p53 signals for the cell to become senescent and/or later to destroy itself via apoptosis.[1] Upon DNA damage and other cellular stressors, the quantity of p53 is upregulated in order to instigate either the repair or apoptotic cellular pathways; however, continued high levels of p53 are detrimental as its increased ability to activate the apoptotic pathway is likened to an accelerated aging process.[1] The C-terminus domain (CTD) of p53 contains several modifiable lysine residues that may be augmented in different patterns resulting in an array of dissimilar protein-protein interactions thus greatly adding to the multiplicity of functions for the protein itself. This study aims to show that the control of these modifications may not only reduce the causation of multiple forms of cancers but may also be used as a preventative mechanism by never allowing malignant masses to have formed in the firstplace

    Jeremy Baskes, Staying Afloat: Risk and Uncertainty in Spanish Atlantic World Trade, 1760-1820

    Get PDF

    Over The Radiophone : Please Let Me Talk To My Mammy

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/3348/thumbnail.jp

    Space-Time Clustering and Correlations of Major Earthquakes

    Get PDF
    Earthquake occurrence in nature is thought to result from correlated elastic stresses, leading to clustering in space and time. We show that occurrence of major earthquakes in California correlates with time intervals when fluctuations in small earthquakes are suppressed relative to the long term average. We estimate a probability of less than 1% that this coincidence is due to random clustering.Comment: 5 pages, 3 figures. Submitted to PR

    Reshaping Practitioner Higher Education Institutions to Serve Adult Learners: The COVID-19 Pandemic Implications

    Get PDF
    Involving over 200 countries, the COVID-19 global pandemic impacts adult learners’ retention, increasing the need to reshape practitioner-oriented higher education institutions to better serve students. The purpose of this study was to explore how practitioner higher education institutions adopted innovative approaches and reshaped policies, practices, and perspectives to accommodate changes brought about by the COVID- 19 pandemic and successfully maintained or increased enrollment. This article reports the results, which may enhance practitioner higher education programs and enrollment

    MACiE: exploring the diversity of biochemical reactions

    Get PDF
    MACiE (which stands for Mechanism, Annotation and Classification in Enzymes) is a database of enzyme reaction mechanisms, and can be accessed from http://www.ebi.ac.uk/thornton-srv/databases/MACiE/. This article presents the release of Version 3 of MACiE, which not only extends the dataset to 335 entries, covering 182 of the EC sub-subclasses with a crystal structure available (∼90%), but also incorporates greater chemical and structural detail. This version of MACiE represents a shift in emphasis for new entries, from non-homologous representatives covering EC reaction space to enzymes with mechanisms of interest to our users and collaborators with a view to exploring the chemical diversity of life. We present new tools for exploring the data in MACiE and comparing entries as well as new analyses of the data and new searches, many of which can now be accessed via dedicated Perl scripts

    The Catalytic Site Atlas 2.0: cataloging catalytic sites and residues identified in enzymes.

    Get PDF
    Understanding which are the catalytic residues in an enzyme and what function they perform is crucial to many biology studies, particularly those leading to new therapeutics and enzyme design. The original version of the Catalytic Site Atlas (CSA) (http://www.ebi.ac.uk/thornton-srv/databases/CSA) published in 2004, which catalogs the residues involved in enzyme catalysis in experimentally determined protein structures, had only 177 curated entries and employed a simplistic approach to expanding these annotations to homologous enzyme structures. Here we present a new version of the CSA (CSA 2.0), which greatly expands the number of both curated (968) and automatically annotated catalytic sites in enzyme structures, utilizing a new method for annotation transfer. The curated entries are used, along with the variation in residue type from the sequence comparison, to generate 3D templates of the catalytic sites, which in turn can be used to find catalytic sites in new structures. To ease the transfer of CSA annotations to other resources a new ontology has been developed: the Enzyme Mechanism Ontology, which has permitted the transfer of annotations to Mechanism, Annotation and Classification in Enzymes (MACiE) and UniProt Knowledge Base (UniProtKB) resources. The CSA database schema has been re-designed and both the CSA data and search capabilities are presented in a new modern web interface
    corecore