202 research outputs found

    Quality Control and Customer Service at BESSY

    Get PDF

    Laser pump X ray probe experiments with electrons ejected from a Cu 111 target space charge acceleration

    Get PDF
    A comprehensive investigation of the emission characteristics for electrons induced by X rays of a few hundred eV at grazing incidence angles on an atomically clean Cu 111 sample during laser excitation is presented. Electron energy spectra due to intense infrared laser irradiation are investigated at the BESSY II slicing facility. Furthermore, the influence of the corresponding high degree of target excitation high peak current of photoemission on the properties of Auger and photoelectrons liberated by a probe X ray beam is investigated in time resolved pump and probe measurements. Strong electron energy shifts have been found and assigned to space charge acceleration. The variation of the shift with laser power and electron energy is investigated and discussed on the basis of experimental as well as new theoretical result

    Element resolved ultrafast demagnetization rates in ferrimagnetic CoDy

    Get PDF
    Femtosecond laser induced ultrafast magnetization dynamics have been studied in multisublattice CoxDy1-x alloys. By performing element and time-resolved X-ray spectroscopy, we distinguish the ultrafast quenching of Co3d and Dy4f magnetic order when the initial temperatures are below (T=150K) or above (T=270K) the temperature of magnetic compensation (Tcomp). In accordance with former element-resolved investigations and theoretical calculations, we observe different dynamics for Co3d and Dy4f spins. In addition we observe that, for a given laser fluence, the demagnetization amplitudes and demagnetization times are not affected by the existence of a temperature of magnetic compensation. However, our experiment reveals a twofold increase of the ultrafast demagnetization rates for the Dy sublattice at low temperature. In parallel, we measure a constant demagnetization rate of the Co3d sublattice above and below Tcomp. This intriguing difference between the Dy4f and Co3d sublattices calls for further theoretical and experimental investigations.Comment: 6 Figure, 2 Table

    Analysis of Granular Packing Structure by Scattering of THz Radiation

    Get PDF
    Scattering methods are widespread used to characterize the structure and constituents of matter on small length scales. This motivates this introductory text on identifying prospective approaches to scattering-based methods for granular media. A survey to light scattering by particles and particle ensembles is given. It is elaborated why the established scattering methods using X-rays and visible light cannot in general be transferred to granular media. Spectroscopic measurements using Terahertz radiation are highlighted as they to probe the scattering properties of granular media, which are sensitive to the packing structure. Experimental details to optimize spectrometer for measurements on granular media are discussed. We perform transmission measurements on static and agitated granular media using Fourier-transform spectroscopy at the THz beamline of the BessyII storage ring. The measurements demonstrate the potential to evaluate degrees of order in the media and to track transient structural states in agitated bulk granular media.Comment: 12 Pages, 9 Figures, 56 Reference

    Phonon anharmonicities and ultrafast dynamics in epitaxial Sb2Te3

    Get PDF
    In this study we report on the investigation of epitaxially grown Sb2Te3 by employing Fourier-Transform transmission Spectroscopy (FTS) with laser-induced Coherent Synchrotron Radiation (CSR) in the Terahertz (THz) spectral range. Static spectra in the range between 20 and 120 cm−1 highlight a peculiar softening of an in-plane IR-active phonon mode upon temperature decrease, as opposed to all Raman active modes which instead show a hardening upon temperature decrease in the same energy range. The phonon mode softening is found to be accompanied by an increase of free carrier concentration. A strong coupling of the two systems (free carriers and phonons) is observed and further evidenced by exciting the same phonon mode at 62 cm−1 within an ultrafast pump-probe scheme employing a femtosecond laser as pump and a CSR single cycle THz pulse as probe. Separation of the free carrier contribution and the phonon resonance in the investigated THz range reveals that, both damping of the phonon mode and relaxation of hot carriers in the time domain happen on the same time scale of 5 ps. This relaxation is about a factor of 10 slower than expected from the Lorentz time-bandwidth limit. The results are discussed in the framework of phonon scattering at thermal and laser induced transient free carriers

    Angular Momentum Flow During Ultrafast Demagnetization of a Ferrimagnet

    Get PDF
    One of the key processes setting the speed of the ultrafast magnetization phenomena is the angular momentum transfer from and into the spin system. However, the way the angular momentum flows during ultrafast demagnetization and magnetization switching phenomena remains elusive so far. We report on time resolved soft x ray magnetic circular dichroism measurements of the ferrimagnetic GdFeCo alloy allowing us to record the dynamics of elemental spin and orbital moments at the Fe and Gd sites during femtosecond laser induced demagnetization. We observe a complete transfer of spin and orbital angular momentum to the lattice during the first hundreds of femtoseconds of the demagnetization proces

    Experimental assignment of long range magnetic communication through Pd amp; Pt metallophilic contacts

    Get PDF
    Record breaking magnetic exchange interactions have previously been reported for 3d metal dimers of the form [M Pt SAc 4 pyNO2 ]2 M Ni or Co that are linked in the solid state via metallophilic Pt amp; 8943;Pt bridges. This contrasts the terminally capped monomers [M Pt SAc 4 py 2], for which neither metallophilic bridges nor magnetic exchange interactions are found. Computational modeling has shown that the magnetic exchange interaction is facilitated by the pseudo closed shell d8 amp; 8943;d8 metallophilic interaction between the filled Pt2 5dz2 orbitals. We present here inelastic neutron scattering experiments on these complexes, wherein the dimers present an oscillatory momentum transfer dependence of the magnetic transitions. This allows for the unequivocal experimental assignment of the distance between the coupled ions, which matches exactly the coupling pathway via the metallophilic bridges. Furthermore, we have synthesized and magnetically characterized the isostructural palladium analogues. The magnetic coupling across the Pd amp; 8943;Pd bridge is found through SQUID magnetometry and FD FT THz EPR spectroscopy to be much weaker than via the Pt amp; 8943;Pt bridge. The weaker coupling is traced to the larger radial extent of the 5dz2 orbitals compared to that of the 4dz2 orbitals. The existence of a palladium metallophilic interaction is evaluated computationally from potential surface cuts along the metal stretching direction. Similar behavior is found for the Pd amp; 8943;Pd and Pt amp; 8943;Pt systems with clear minima along this coordinate and provide estimates for the force constant for this distortion. The estimated M amp; 8943;M stretching frequencies are found to match experimental observed, polarized bands in single crystal Raman spectra close to 45 cm amp; 8722;1. This substantiates the existence of energetically relevant Pd amp; 8943;Pd metallophilic interactions. The unique properties of both Pt2 and Pd2 constitutes an orthogonal reactivity, which can be utilized for steering both the direction and strength of magnetic interaction

    Ultrafast and Distinct Spin Dynamics in Magnetic Alloys

    Get PDF
    Controlling magnetic order on ultrashort timescales is crucial for engineering the next-generation magnetic devices that combine ultrafast data processing with ultrahigh-density data storage. An appealing scenario in this context is the use of femtosecond (fs) laser pulses as an ultrafast, external stimulus to fully set the orientation and the magnetization magnitude of a spin ensemble. Achieving such control on ultrashort timescales, e.g., comparable to the excitation event itself, remains however a challenge due to the lack of understanding the dynamical behavior of the key parameters governing magnetism: The elemental magnetic moments and the exchange interaction. Here, we investigate the fs laser-induced spin dynamics in a variety of multi-component alloys and reveal a dissimilar dynamics of the constituent magnetic moments on ultrashort timescales. Moreover, we show that such distinct dynamics is a general phenomenon that can be exploited to engineer new magnetic media with tailor-made, optimized dynamic properties. Using phenomenological considerations, atomistic modeling and time-resolved X-ray magnetic circular dichroism (XMCD), we demonstrate demagnetization of the constituent sub-lattices on significantly different timescales that depend on their magnetic moments and the sign of the exchange interaction. These results can be used as a “recipe” for manipulation and control of magnetization dynamics in a large class of magnetic materials
    corecore