20 research outputs found

    Functional electrical stimulation versus ankle foot orthoses for foot-drop: a meta-analysis of orthotic effects

    Get PDF
    Objective: To compare the effects on walking of Functional Electrical Stimulation (FES) and Ankle Foot Orthoses (AFO) for foot-drop of central neurological origin, assessed in terms of unassisted walking behaviours compared with assisted walking following a period of use (combined-orthotic effects). Data Sources: MEDLINE, AMED, CINAHL, Cochrane Central Register of Controlled Trials, Scopus, REHABDATA, PEDro, NIHR Centre for Reviews and Dissemination and clinicaltrials.gov. plus reference list, journal, author and citation searches. Study Selection: English language comparative Randomised Controlled Trials (RCTs). Data Synthesis: Seven RCTs were eligible for inclusion. Two of these reported different results from the same trial and another two reported results from different follow up periods so were combined; resulting in five synthesised trials with 815 stroke participants. Meta-analyses of data from the final assessment in each study and three overlapping time-points showed comparable improvements in walking speed over ten metres (p=0.04-0.95), functional exercise capacity (p=0.10-0.31), timed up-and-go (p=0.812 and p=0.539) and perceived mobility (p=0.80) for both interventions. Conclusion: Data suggest that, in contrast to assumptions that predict FES superiority, AFOs have equally positive combined-orthotic effects as FES on key walking measures for foot-drop caused by stroke. However, further long-term, high-quality RCTs are required. These should focus on measuring the mechanisms-of-action; whether there is translation of improvements in impairment to function, plus detailed reporting of the devices used across diagnoses. Only then can robust clinical recommendations be made

    Functional electrical stimulation and ankle foot orthoses provide equivalent therapeutic effects on foot drop: A meta-analysis providing direction for future research

    Get PDF
    Objective: To compare the randomized controlled trial evidence for therapeutic effects on walking of functional electrical stimulation and ankle foot orthoses for foot drop caused by central nervous system conditions. Data sources: MEDLINE, CINAHL, Cochrane Central Register of Controlled Trials, REHABDATA, PEDro, NIHR Centre for Reviews and Dissemination, Scopus and clinicaltrials.gov. Study selection: One reviewer screened titles/abstracts. Two independent reviewers then screened the full articles. Data extraction: One reviewer extracted data, another screened for accuracy. Risk of bias was assessed by 2 independent reviewers using the Cochrane Risk of Bias Tool. Data synthesis: Eight papers were eligible; 7 involving participants with stroke and 1 involving participants with cerebral palsy. Two papes reporting different measures from the same trial were grouped, resulting in 7 synthesized randomized controlled trials (n= 464). Meta-analysis of walking speed at final assessment (p = 0.46), for stroke participants (p = 0.54) and after 4–6 weeks’ use (p = 0.49) showed equal improvement for both devices. Conclusion: Functional electrical stimulation and ankle foot orthoses have an equally positive therapeutic effect on walking speed in non-progressive central nervous system diagnoses. The current randomized controlled trial evidence base does not show whether this improvement translates into the user’s own environment or reveal the mechanisms that achieve that change. Future studies should focus on measuring activity, muscle activity and gait kinematics. They should also report specific device details, capture sustained therapeutic effects and involve a variety of central nervous system diagnoses

    Visual cue training to improve walking and turning after stroke:a study protocol for a multi-centre, single blind randomised pilot trial

    Get PDF
    Visual information comprises one of the most salient sources of information used to control walking and the dependence on vision to maintain dynamic stability increases following a stroke. We hypothesize, therefore, that rehabilitation efforts incorporating visual cues may be effective in triggering recovery and adaptability of gait following stroke. This feasibility trial aims to estimate probable recruitment rate, effect size, treatment adherence and response to gait training with visual cues in contrast to conventional overground walking practice following stroke.Methods/design: A 3-arm, parallel group, multi-centre, single blind, randomised control feasibility trial will compare overground visual cue training (O-VCT), treadmill visual cue training (T-VCT), and usual care (UC). Participants (n = 60) will be randomly assigned to one of three treatments by a central randomisation centre using computer generated tables to allocate treatment groups. The research assessor will remain blind to allocation. Treatment, delivered by physiotherapists, will be twice weekly for 8 weeks at participating outpatient hospital sites for the O-VCT or UC and in a University setting for T-VCT participants.Individuals with gait impairment due to stroke, with restricted community ambulation (gait spee

    Validation of gait event detection by centre of pressure during target stepping in healthy and paretic gait

    Get PDF
    Background: Target-stepping paradigms are increasingly used to assess and train gait adaptability. Accurate gait-event detection (GED) is key to locating targets relative to the ongoing step cycle as well as measuring foot-placement error. In the current literature GED is either based on kinematics or centre of pressure (CoP), and both have been previously validated with young healthy individuals. However, CoP based GED has not been validated for stroke survivors who demonstrate altered CoP pattern. Methods: Young healthy adults and individuals affected by stroke stepped to targets on a treadmill, while gait events were measured using three detection methods; verticies of CoP cyclograms, and two kinematic criteria, 1) vertical velocity and position and of the heel marker, 2) anterior velocity and position of the heel and toe marker, were used. The percentage of unmatched gait events was used to determine the success of the GED method. The difference between CoP and kinematic GED methods were tested with two one sample (two-tailed) t-tests against a reference value of zero. Differences between group and paretic and non-paretic leg were tested with a repeated measures ANOVA. Results: The kinematic method based on vertical velocity only detected about 80% of foot contact events on the paretic side in stroke survivors while the method on anterior velocity was more successful in both young healthy adults as stroke survivors (3% young healthy and 7% stroke survivors unmatched). Both kinematic methods detected gait events significantly earlier than CoP GED (p<0.001) except for foot contact in stroke survivors based on the vertical velocity. Conclusions: CoP GED may be more appropriate for gait analyses of SS than kinematic methods; even when walking and varying steps

    Foot-placement accuracy during planned and reactive target stepping during walking in stroke survivors and healthy adults

    Get PDF
    Background: The high prevalence of falls due to trips and slips following stroke may signify difficulty adjusting foot-placement in response to the environment. However, little is known about under what circumstances foot-placement adjustment becomes difficult for stroke survivors (SS), making the design of targeted rehabilitation interventions to improve independent community mobility difficult. Research question: To investigate the effect of planned and reactive target-stepping on foot-placement accuracy in stroke survivors and young and older healthy adults? Methods: Young (N=11, 30±6 years) and older (N=10, 64±8 years) healthy adults and SS (N=11, 67±9 years) walked, at preferred pace, on a force instrumented treadmill. Each participant walked to illuminated targets, visible two steps in advance (planned) or appearing at contralateral midstance (reactive). Foot-placement error (magnitude and bias) and number of missed targets were compared. Results: All participants missed more reactive than planned targets (p=0.05), and SS missed more targets than young (p<0.001) and older (p=0.001) adults. But no interaction showing SS missed more reactive targets than other groups was found. For all groups: reactive adaptations to steps in the anterio-posterior plane resulted in lower error than planned adaptations (p=0.027). Lengthening steps where undershot more than shortening (p<0.001) by all groups. Reactive medio-lateral adaptations over all induced larger error (p=0.029) than planned and changed the direction of bias (p=0.018). Significance: SS experience difficulty making all adjustments, they showed increased error in all conditions but less pronounced difference between planned and reactive stepping. SS may use a reactive control strategy for all adjustments, in contrast to healthy young adults who may plan foot-placement in advance. The likelihood of stroke survivors misplacing a step is large, with 9.8% targets missed; possibly leading to falls. Further investigation is needed to understand foot-placement control strategies used by SS and the role of planning in gait adaptability

    Standardized measurement of balance and mobility post-stroke:Consensus-based core recommendations from the third Stroke Recovery and Rehabilitation Roundtable

    No full text
    Background: Mobility is a key priority for stroke survivors. Worldwide consensus of standardized outcome instruments for measuring mobility recovery after stroke is an essential milestone to optimize the quality of stroke rehabilitation and recovery studies and to enable data synthesis across trials. Methods: Using a standardized methodology, which involved convening of 13 worldwide experts in the field of mobility rehabilitation, consensus was established through an a priori defined survey-based approach followed by group discussions. The group agreed on balance- and mobility-related definitions and recommended a core set of outcome measure instruments for lower extremity motor function, balance and mobility, biomechanical metrics, and technologies for measuring quality of movement. Results: Selected measures included the Fugl-Meyer Motor Assessment lower extremity subscale for motor function, the Trunk Impairment Scale for sitting balance, and the Mini Balance Evaluation System Test (Mini-BESTest) and Berg Balance Scale (BBS) for standing balance. The group recommended the Functional Ambulation Category (FAC, 0–5) for walking independence, the 10-meter Walk Test (10 mWT) for walking speed, the 6-Minute Walk Test (6 MWT) for walking endurance, and the Dynamic Gait Index (DGI) for complex walking. An FAC score of less than three should be used to determine the need for an additional standing test (FAC &lt; 3, add BBS to Mini-BESTest) or the feasibility to assess walking (FAC &lt; 3, 10 mWT, 6 MWT, and DGI are “not testable”). In addition, recommendations are given for prioritized kinetic and kinematic metrics to be investigated that measure recovery of movement quality of standing balance and walking, as well as for assessment protocols and preferred equipment to be used. Conclusions: The present recommendations of measures, metrics, technology, and protocols build on previous consensus meetings of the International Stroke Recovery and Rehabilitation Alliance to guide the research community to improve the validity and comparability between stroke recovery and rehabilitation studies as a prerequisite for building high-quality, standardized “big data” sets. Ultimately, these recommendations could lead to high-quality, participant-specific data sets to aid the progress toward precision medicine in stroke rehabilitation.</p

    Standardized measurement of balance and mobility post-stroke : consensus-based core recommendations from the third Stroke Recovery and Rehabilitation Roundtable

    No full text
    Abstract: Background: Mobility is a key priority for stroke survivors. Worldwide consensus of standardized outcome instruments for measuring mobility recovery after stroke is an essential milestone to optimize the quality of stroke rehabilitation and recovery studies and to enable data synthesis across trials.Methods: Using a standardized methodology, which involved convening of 13 worldwide experts in the field of mobility rehabilitation, consensus was established through an a priori defined survey-based approach followed by group discussions. The group agreed on balance- and mobility-related definitions and recommended a core set of outcome measure instruments for lower extremity motor function, balance and mobility, biomechanical metrics, and technologies for measuring quality of movement.Results: Selected measures included the Fugl-Meyer Motor Assessment lower extremity subscale for motor function, the Trunk Impairment Scale for sitting balance, and the Mini Balance Evaluation System Test (Mini-BESTest) and Berg Balance Scale (BBS) for standing balance. The group recommended the Functional Ambulation Category (FAC, 0-5) for walking independence, the 10-meter Walk Test (10 mWT) for walking speed, the 6-Minute Walk Test (6 MWT) for walking endurance, and the Dynamic Gait Index (DGI) for complex walking. An FAC score of less than three should be used to determine the need for an additional standing test (FAC < 3, add BBS to Mini-BESTest) or the feasibility to assess walking (FAC < 3, 10 mWT, 6 MWT, and DGI are "not testable"). In addition, recommendations are given for prioritized kinetic and kinematic metrics to be investigated that measure recovery of movement quality of standing balance and walking, as well as for assessment protocols and preferred equipment to be used.Conclusions: The present recommendations of measures, metrics, technology, and protocols build on previous consensus meetings of the International Stroke Recovery and Rehabilitation Alliance to guide the research community to improve the validity and comparability between stroke recovery and rehabilitation studies as a prerequisite for building high-quality, standardized "big data" sets. Ultimately, these recommendations could lead to high-quality, participant-specific data sets to aid the progress toward precision medicine in stroke rehabilitation

    Standardized measurement of balance and mobility post-stroke : consensus-based core recommendations from the third Stroke Recovery and Rehabilitation Roundtable

    No full text
    Abstract: Background: Mobility is a key priority for stroke survivors. Worldwide consensus of standardized outcome instruments for measuring mobility recovery after stroke is an essential milestone to optimize the quality of stroke rehabilitation and recovery studies and to enable data synthesis across trials.Methods: Using a standardized methodology, which involved convening of 13 worldwide experts in the field of mobility rehabilitation, consensus was established through an a priori defined survey-based approach followed by group discussions. The group agreed on balance- and mobility-related definitions and recommended a core set of outcome measure instruments for lower extremity motor function, balance and mobility, biomechanical metrics, and technologies for measuring quality of movement.Results: Selected measures included the Fugl-Meyer Motor Assessment lower extremity subscale for motor function, the Trunk Impairment Scale for sitting balance, and the Mini Balance Evaluation System Test (Mini-BESTest) and Berg Balance Scale (BBS) for standing balance. The group recommended the Functional Ambulation Category (FAC, 0-5) for walking independence, the 10-meter Walk Test (10 mWT) for walking speed, the 6-Minute Walk Test (6 MWT) for walking endurance, and the Dynamic Gait Index (DGI) for complex walking. An FAC score of less than three should be used to determine the need for an additional standing test (FAC < 3, add BBS to Mini-BESTest) or the feasibility to assess walking (FAC < 3, 10 mWT, 6 MWT, and DGI are "not testable"). In addition, recommendations are given for prioritized kinetic and kinematic metrics to be investigated that measure recovery of movement quality of standing balance and walking, as well as for assessment protocols and preferred equipment to be used.Conclusions: The present recommendations of measures, metrics, technology, and protocols build on previous consensus meetings of the International Stroke Recovery and Rehabilitation Alliance to guide the research community to improve the validity and comparability between stroke recovery and rehabilitation studies as a prerequisite for building high-quality, standardized "big data" sets. Ultimately, these recommendations could lead to high-quality, participant-specific data sets to aid the progress toward precision medicine in stroke rehabilitation

    CONSORT study flowchart.

    No full text
    <p>* Other reasons for non-completion include: complex social issues preventing participation (n = 2 TVCT, n = 2 UC), fall at home (n = 1 TVCT), new diagnosis (n = 1 TVCT), therapist decision (n = 2 OVCT), no longer eligible for rehabilitation within the NHS (n = 2 OVCT). Reasons for withdrawal of consent include: unable to attend treatment 2X/week (n = 1 TVCT, n = 1 OVCT), too fatigued after exercise (n = 1 OVCT), difficulty travelling for treatment (n = 1 TVCT), comorbid health problems (n = 1 TVCT), unknown reasons (n = 1 UC).</p
    corecore