15,926 research outputs found

    Grape Growing in Ohio

    Get PDF
    Exact date of bulletin unknown.PDF pages: 1

    A study of thermal response of the lunar surface at the landing site during the descent of the Lunar Excursion Module /LEM/

    Get PDF
    Thermal response of lunar surface at landing site due to radiative and convective heat transfer from LEM exhaust nozzl

    Entangled-state cryptographic protocol that remains secure even if nonlocal hidden variables exist and can be measured with arbitrary precision

    Full text link
    Standard quantum cryptographic protocols are not secure if one assumes that nonlocal hidden variables exist and can be measured with arbitrary precision. The security can be restored if one of the communicating parties randomly switches between two standard protocols.Comment: Shortened version, accepted in Phys. Rev.

    Unraveling quantum dissipation in the frequency domain

    Full text link
    We present a quantum Monte Carlo method for solving the evolution of an open quantum system. In our approach, the density operator evolution is unraveled in the frequency domain. Significant advantages of this approach arise when the frequency of each dissipative event conveys information about the state of the system.Comment: 4 pages, 4 Postscript figures, uses RevTe

    Monetary policy and economic activity: a postwar review

    Get PDF
    Monetary policy ; Financial markets ; Economic conditions

    50 nm GaAs mHEMTs and MMICs for ultra-low power distributed sensor network applications

    Get PDF
    We report well-scaled 50 nm GaAs metamorphic HEMTs (mHEMTs) with DC power consumption in the range 1-150 ΜW/Μ demonstrating f<sub>T</sub> of 30-400 GHz. These metrics enable the realisation of ultra-low power (<500 ΜW) radio transceivers for autonomous distributed sensor network applications

    Sympathetic cooling of trapped fermions by bosons in the presence of particle losses

    Full text link
    We study the sympathetic cooling of a trapped Fermi gas interacting with an ideal Bose gas below the critical temperature of the Bose-Einstein condensation. We derive the quantum master equation, which describes the dynamics of the fermionic component, and postulating the thermal distribution for both gases we calculate analytically the rate at which fermions are cooled by the bosonic atoms. The particle losses constitute an important source of heating of the degenerate Fermi gas. We evaluate the rate of loss-induced heating and derive analytical results for the final temperature of fermions, which is limited in the presence of particle losses.Comment: 7 pages, 2 figures, EPL style; final versio

    Kinetics of Bose-Einstein Condensation in a Trap

    Get PDF
    The formation process of a Bose-Einstein condensate in a trap is described using a master equation based on quantum kinetic theory, which can be well approximated by a description using only the condensate mode in interaction with a thermalized bath of noncondensate atoms. A rate equation of the form n = 2W(n)[(1-exp((mu_n - mu)/kT))n + 1] is derived, in which the difference between the condensate chemical potential mu_n and the bath chemical potential mu gives the essential behavior. Solutions of this equation, in conjunction with the theoretical description of the process of evaporative cooling, give a characteristic latency period for condensate formation and appear to be consistent with the observed behavior of both rubidium and sodium condensate formation.Comment: 9 pages, Revte
    • …
    corecore