1,641 research outputs found

    SSN: The Queen of the Seas

    Get PDF
    The United States\u27 need for maritime superiority stands as the fundamental goal of this country\u27s naval forces

    In My View

    Get PDF

    The Surface Brightness Fluctuations and Globular Cluster Populations of M87 and its Companions

    Get PDF
    Using the surface brightness fluctuations in HST WFPC-2 images, we determine that M87, NGC 4486B, and NGC 4478 are all at a distance of ~16 Mpc, while NGC 4476 lies in the background at ~21 Mpc. We also examine the globular clusters of M87 using archived HST fields. We detect the bimodal color distribution, and find that the amplitude of the red peak relative to the blue peak is greatest near the center. This feature is in good agreement with the merger model of elliptical galaxy formation, where some of the clusters originated in progenitor galaxies while other formed during mergers.Comment: 5 pages, 2 figure

    de Broglie-Bohm Interpretation for the Wave Function of Quantum Black Holes

    Get PDF
    We study the quantum theory of the spherically symmetric black holes. The theory yields the wave function inside the apparent horizon, where the role of time and space coordinates is interchanged. The de Broglie-Bohm interpretation is applied to the wave function and then the trajectory picture on the minisuperspace is introduced in the quantum as well as the semi-classical region. Around the horizon large quantum fluctuations on the trajectories of metrics UU and VV appear in our model, where the metrics are functions of time variable TT and are expressed as ds2=α2/UdT2+UdR2+VdΩ2ds^2=-{\alpha^2}/U dT^2 + U dR^2 + V d\Omega^2. On the trajectories, the classical relation U=V1/2+2GmU=-V^{1/2}+2Gm holds, and the event horizon U=0 corresponds to the classical apparent horizon on V=2GmV=2Gm. In order to investigate the quantum fluctuation near the horizon, we study a null ray on the dBB trajectory and compare it with the one in the classical black hole geometry.Comment: 20 pages, Latex, 7 Postscript figure

    The Bohm Interpretation of Quantum Cosmology

    Full text link
    I make a review on the aplications of the Bohm-De Broglie interpretation of quantum mechanics to quantum cosmology. In the framework of minisuperspaces models, I show how quantum cosmological effects in Bohm's view can avoid the initial singularity, isotropize the Universe, and even be a cause for the present observed acceleration of the Universe. In the general case, we enumerate the possible structures of quantum space and time.Comment: 28 pages, 1 figure, contribution to the James Cushing festschrift to appear in Foundations of Physic

    Calculations of collisions between cold alkaline earth atoms in a weak laser field

    Get PDF
    We calculate the light-induced collisional loss of laser-cooled and trapped magnesium atoms for detunings up to 50 atomic linewidths to the red of the ^1S_0-^1P_1 cooling transition. We evaluate loss rate coefficients due to both radiative and nonradiative state-changing mechanisms for temperatures at and below the Doppler cooling temperature. We solve the Schrodinger equation with a complex potential to represent spontaneous decay, but also give analytic models for various limits. Vibrational structure due to molecular photoassociation is present in the trap loss spectrum. Relatively broad structure due to absorption to the Mg_2 ^1Sigma_u state occurs for detunings larger than about 10 atomic linewidths. Much sharper structure, especially evident at low temperature, occurs even at smaller detunings due to of Mg_2 ^1Pi_g absorption, which is weakly allowed due to relativistic retardation corrections to the forbidden dipole transition strength. We also perform model studies for the other alkaline earth species Ca, Sr, and Ba and for Yb, and find similar qualitative behavior as for Mg.Comment: 20 pages, RevTex, 13 eps figures embedde

    Hands-On Parameter Search for Neural Simulations by a MIDI-Controller

    Get PDF
    Computational neuroscientists frequently encounter the challenge of parameter fitting – exploring a usually high dimensional variable space to find a parameter set that reproduces an experimental data set. One common approach is using automated search algorithms such as gradient descent or genetic algorithms. However, these approaches suffer several shortcomings related to their lack of understanding the underlying question, such as defining a suitable error function or getting stuck in local minima. Another widespread approach is manual parameter fitting using a keyboard or a mouse, evaluating different parameter sets following the users intuition. However, this process is often cumbersome and time-intensive. Here, we present a new method for manual parameter fitting. A MIDI controller provides input to the simulation software, where model parameters are then tuned according to the knob and slider positions on the device. The model is immediately updated on every parameter change, continuously plotting the latest results. Given reasonably short simulation times of less than one second, we find this method to be highly efficient in quickly determining good parameter sets. Our approach bears a close resemblance to tuning the sound of an analog synthesizer, giving the user a very good intuition of the problem at hand, such as immediate feedback if and how results are affected by specific parameter changes. In addition to be used in research, our approach should be an ideal teaching tool, allowing students to interactively explore complex models such as Hodgkin-Huxley or dynamical systems
    corecore