1,365 research outputs found

    Construction of two whole genome radiation hybrid panels for dromedary (Camelus dromedarius): 5000RAD and 15000RAD

    Get PDF
    The availability of genomic resources including linkage information for camelids has been very limited. Here, we describe the construction of a set of two radiation hybrid (RH) panels (5000RAD and 15000RAD) for the dromedary (Camelus dromedarius) as a permanent genetic resource for camel genome researchers worldwide. For the 5000RAD panel, a total of 245 female camel-hamster radiation hybrid clones were collected, of which 186 were screened with 44 custom designed marker loci distributed throughout camel genome. The overall mean retention frequency (RF) of the final set of 93 hybrids was 47.7%. For the 15000RAD panel, 238 male dromedary-hamster radiation hybrid clones were collected, of which 93 were tested using 44 PCR markers. The final set of 90 clones had a mean RF of 39.9%. This 15000RAD panel is an important high-resolution complement to the main 5000RAD panel and an indispensable tool for resolving complex genomic regions. This valuable genetic resource of dromedary RH panels is expected to be instrumental for constructing a high resolution camel genome map. Construction of the set of RH panels is essential step toward chromosome level reference quality genome assembly that is critical for advancing camelid genomics and the development of custom genomic tools

    Structure and energetics of the Si-SiO_2 interface

    Full text link
    Silicon has long been synonymous with semiconductor technology. This unique role is due largely to the remarkable properties of the Si-SiO_2 interface, especially the (001)-oriented interface used in most devices. Although Si is crystalline and the oxide is amorphous, the interface is essentially perfect, with an extremely low density of dangling bonds or other electrically active defects. With the continual decrease of device size, the nanoscale structure of the silicon/oxide interface becomes more and more important. Yet despite its essential role, the atomic structure of this interface is still unclear. Using a novel Monte Carlo approach, we identify low-energy structures for the interface. The optimal structure found consists of Si-O-Si "bridges" ordered in a stripe pattern, with very low energy. This structure explains several puzzling experimental observations.Comment: LaTex file with 4 figures in GIF forma

    25^{25}O - Beyond the Neutron Dripline

    Get PDF

    Structure and oxidation kinetics of the Si(100)-SiO2 interface

    Full text link
    We present first-principles calculations of the structural and electronic properties of Si(001)-SiO2 interfaces. We first arrive at reasonable structures for the c-Si/a-SiO2 interface via a Monte-Carlo simulated annealing applied to an empirical interatomic potential, and then relax these structures using first-principles calculations within the framework of density-functional theory. We find a transition region at the interface, having a thickness on the order of 20\AA, in which there is some oxygen deficiency and a corresponding presence of sub-oxide Si species (mostly Si^+2 and Si^+3). Distributions of bond lengths and bond angles, and the nature of the electronic states at the interface, are investigated and discussed. The behavior of atomic oxygen in a-SiO2 is also investigated. The peroxyl linkage configuration is found to be lower in energy than interstitial or threefold configurations. Based on these results, we suggest a possible mechanism for oxygen diffusion in a-SiO2 that may be relevant to the oxidation process.Comment: 7 pages, two-column style with 6 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#ng_sio

    Nucleon axial and pseudoscalar form factors from the covariant Faddeev equation

    Full text link
    We compute the axial and pseudoscalar form factors of the nucleon in the Dyson-Schwinger approach. To this end, we solve a covariant three-body Faddeev equation for the nucleon wave function and determine the matrix elements of the axialvector and pseudoscalar isotriplet currents. Our only input is a well-established and phenomenologically successful ansatz for the nonperturbative quark-gluon interaction. As a consequence of the axial Ward-Takahashi identity that is respected at the quark level, the Goldberger-Treiman relation is reproduced for all current-quark masses. We discuss the timelike pole structure of the quark-antiquark vertices that enters the nucleon matrix elements and determines the momentum dependence of the form factors. Our result for the axial charge underestimates the experimental value by 20-25% which might be a signal of missing pion-cloud contributions. The axial and pseudoscalar form factors agree with phenomenological and lattice data in the momentum range above Q^2 ~ 1...2 GeV^2.Comment: 17 pages, 7 figures, 1 tabl

    Large tunable valley splitting in edge-free graphene quantum dots on boron nitride

    Full text link
    Coherent manipulation of binary degrees of freedom is at the heart of modern quantum technologies. Graphene offers two binary degrees: the electron spin and the valley. Efficient spin control has been demonstrated in many solid state systems, while exploitation of the valley has only recently been started, yet without control on the single electron level. Here, we show that van-der Waals stacking of graphene onto hexagonal boron nitride offers a natural platform for valley control. We use a graphene quantum dot induced by the tip of a scanning tunneling microscope and demonstrate valley splitting that is tunable from -5 to +10 meV (including valley inversion) by sub-10-nm displacements of the quantum dot position. This boosts the range of controlled valley splitting by about one order of magnitude. The tunable inversion of spin and valley states should enable coherent superposition of these degrees of freedom as a first step towards graphene-based qubits

    Low-mass e+e- pair production in 158 A GeV Pb-Au collisions at the CERN SPS, its dependence on multiplicity and transverse momentum

    Full text link
    We report a measurement of low-mass electron pairs observed in 158 GeV/nucleon Pb-Au collisions. The pair yield integrated over the range of invariant masses 0.2 < m < 2.0 GeV is enhanced by a factor of 3.5 +/- 0.4 (stat) +/- 0.9 (syst) over the expectation from neutral meson decays. As observed previously in S-Au collisions, the enhancement is most pronounced in the invariant-mass region 300-700 MeV. For Pb-Au we find evidence for a strong increase of the enhancement with centrality. In addition, we show that the enhancement covers a wide range in transverse momentum, but is largest at the lowest observed pt.Comment: 17 pages, 4 figures, submitted to Phys.Lett.

    Apraxia and motor dysfunction in corticobasal syndrome

    Get PDF
    Background: Corticobasal syndrome (CBS) is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS) has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impairment in CBS. Secondly, that motor system dysfunction can be demonstrated in CBS, using threshold-tracking TMS, and is linked to limb apraxia. Finally, that atrophy of the primary motor cortex, studied using voxel-based morphometry analysis (VBM), is associated with motor system dysfunction and limb apraxia in CBS.   Methods: Imitation of meaningful and meaningless hand gestures was graded to assess limb apraxia, while cognitive performance was assessed using the Addenbrooke's Cognitive Examination - Revised (ACE-R), with particular emphasis placed on the visuospatial subtask. Patients underwent TMS, to assess cortical function, and VBM.   Results: In total, 17 patients with CBS (7 male, 10 female; mean age 64.4+/2 6.6 years) were studied and compared to 17 matched control subjects. Of the CBS patients, 23.5% had a relatively inexcitable motor cortex, with evidence of cortical dysfunction in the remaining 76.5% patients. Reduced resting motor threshold, and visuospatial performance, correlated with limb apraxia. Patients with a resting motor threshold <50% performed significantly worse on the visuospatial sub-task of the ACE-R than other CBS patients. Cortical function correlated with atrophy of the primary and pre-motor cortices, and the thalamus, while apraxia correlated with atrophy of the pre-motor and parietal cortices.   Conclusions: Cortical dysfunction appears to underlie the core clinical features of CBS, and is associated with atrophy of the primary motor and pre-motor cortices, as well as the thalamus, while apraxia correlates with pre-motor and parietal atrophy
    corecore