34 research outputs found

    Resolution of Cellular Heterogeneity in Human Prostate Cancers : Implications for Diagnosis and Treatment

    Get PDF
    Prostate cancers have a justified reputation as one of the most heterogeneous human tumours. Indeed, there are some who consider that advanced and castration-resistant prostate cancers are incurable, as a direct result of this heterogeneity. However, tumour heterogeneity can be defined in different ways. To a clinician, prostate cancer is a number of different diseases, the treatments for which remain equally heterogeneous and uncertain. To the pathologist, the histopathological appearances of the tumours are notoriously heterogeneous. Indeed, the genius of Donald Gleason in the 1960s was to devise a classification system designed to take into account the heterogeneity of the tumours both individually and in the whole prostate context. To the cell biologist, a prostate tumour consists of multiple epithelial cell types, inter-mingled with various fibroblasts, neuroendocrine cells, endothelial cells, macrophages and lymphocytes, all of which interact to influence treatment responses in a patient-specific manner. Finally, genetic analyses of prostate cancers have been compromised by the variable gene rearrangements and paucity of activating mutations observed, even in large numbers of patient tumours with consistent clinical diagnoses and/or outcomes. Research into familial susceptibility has even generated the least tractable outcome of such studies: the genetic loci are of low penetrance and are of course heterogeneous. By fractionating the tumour (and patient-matched non-malignant tissues) heterogeneity can be resolved, revealing homogeneous markers of patient outcomes

    Sorafenib decreases proliferation and induces apoptosis of prostate cancer cells by inhibition of the androgen receptor and Akt signaling pathways

    Get PDF
    Antihormonal and chemotherapy are standard treatments for nonorgan-confined prostate cancer. The effectivity of these therapies is limited and the development of alternative approaches is necessary. In the present study, we report on the use of the multikinase inhibitor sorafenib in a panel of prostate cancer cell lines and their derivatives which mimic endocrine and chemotherapy resistance. 3H-thymidine incorporation assays revealed that sorafenib causes a dose-dependent inhibition of proliferation of all cell lines associated with downregulation of cyclin-dependent kinase 2 and cyclin D1 expression. Apoptosis was induced at 2 μM of sorafenib in androgen-sensitive cells, whereas a higher dose of the drug was needed in castration-resistant cell lines. Sorafenib stimulated apoptosis in prostate cancer cell lines through downregulation of myeloid cell leukemia-1 (MCL-1) expression and Akt phosphorylation. Although concentrations of sorafenib required for the antitumor effect in therapy-resistant sublines were higher than those needed in parental cells, the drug showed efficacy in cells which became resistant to bicalutamide and docetaxel respectively. Most interestingly, we show that sorafenib has an inhibitory effect on androgen receptor (AR) and prostate-specific antigen expression. In cells in which AR expression was downregulated by short interfering RNA, the treatment with sorafenib increased apoptosis in an additive manner. In summary, the results of the present study indicate that there is a potential to use sorafenib in prostate cancers as an adjuvant therapy option to current androgen ablation treatments, but also in progressed prostate cancers that become unresponsive to standard therapies

    Features of Idebenone and Related Short-Chain Quinones that Rescue ATP Levels under Conditions of Impaired Mitochondrial Complex I

    Get PDF
    Short-chain quinones have been investigated as therapeutic molecules due to their ability to modulate cellular redox reactions, mitochondrial electron transfer and oxidative stress, which are pathologically altered in many mitochondrial and neuromuscular disorders. Recently, we and others described that certain short-chain quinones are able to bypass a deficiency in complex I by shuttling electrons directly from the cytoplasm to complex III of the mitochondrial respiratory chain to produce ATP. Although this energy rescue activity is highly interesting for the therapy of disorders associated with complex I dysfunction, no structure-activity-relationship has been reported for short-chain quinones so far. Using a panel of 70 quinones, we observed that the capacity for this cellular energy rescue as well as their effect on lipid peroxidation was influenced more by the physicochemical properties (in particular logD) of the whole molecule than the quinone moiety itself. Thus, the observed correlations allow us to explain the differential biological activities and therapeutic potential of short-chain quinones for the therapy of disorders associated with mitochondrial complex I dysfunction and/or oxidative stress

    Metabolic changes during prostate cancer development and progression

    No full text
    Metabolic reprogramming has been recognised as a hallmark in solid tumours. Malignant modification of the tumour’s bioenergetics provides energy for tumour growth and progression. Otto Warburg first reported these metabolic and biochemical changes in 1927. In prostate cancer (PCa) epithelial cells, the tumour metabolism also changes during development and progress. These alterations are partly driven by the androgen receptor, the key regulator in PCa development, progress, and survival. In contrast to other epithelial cells of different entities, glycolytic metabolism in prostate cells sustains physiological citrate secretion in the normal prostatic epithelium. In the early stages of PCa, citrate is utilised to power oxidative phosphorylation and fuel lipogenesis, enabling tumour growth and progression. In advanced and incurable castration-resistant PCa, a metabolic shift towards choline, amino acid, and glycolytic metabolism fueling tumour growth and progression has been described. Therefore, even if the metabolic changes are not fully understood, the altered metabolism during tumour progression may provide opportunities for novel therapeutic strategies, especially in advanced PCa stages. This review focuses on the main differences in PCa’s metabolism during tumourigenesis and progression highlighting glutamine’s role in PCa

    Systemic Triple Therapy in Metastatic Hormone-Sensitive Prostate Cancer (mHSPC): Ready for Prime Time or Still to Be Explored?

    No full text
    For decades, mono androgen deprivation therapy (ADT) has been the gold standard for metastatic hormone-sensitive prostate cancer (mHSPC) treatment. Several studies have been published within the last seven years demonstrating a significant survival advantage by combination treatment with standard ADT plus docetaxel or androgen receptor-axis-targeted therapy (ARAT) compared to ADT monotherapy. As a result, overall survival can be prolonged by at least 18 months. Recently published congress data of the PEACE-1 study suggests that in the future, triple therapy might be the new gold standard. In addition to this study, which has shown that triple treatment with standard ADT plus docetaxel plus abiraterone is superior to standard ADT plus docetaxel, several other phase III triple therapy studies are currently ongoing. The different modes of action that are investigated reach from AR-targeting over mitotic inhibition and immunotherapy to PARP and AKT inhibition. In this review we will explore if triple therapy has the potential to be the new standard for mHSPC treatment in the near future

    Acquired resistance to irradiation or docetaxel is not associated with cross‑resistance to cisplatin in prostate cancer cell lines

    Get PDF
    Purpose: Platinum chemotherapy can be considered to treat metastatic castration-resistant prostate cancer (mCRPC) with features of neuroendocrine differentiation. However, platinum compounds are generally only applied after the failure of multiple prior-line treatment options. This study investigated whether acquired resistance against ionizing radiation or docetaxel chemotherapy—two commonly applied treatment modalities in prostate cancer—influences the cisplatin (CDDP) tolerance in mCRPC cell line models. Methods: Age-matched parental as well as radio- or docetaxel-resistant DU145 and PC-3 cell lines were treated with CDDP and their sensitivity was assessed by measurements of growth rates, viability, apoptosis, metabolic activity and colony formation ability. Results: The data suggest that docetaxel resistance does not influence CDDP tolerance in all tested docetaxel-resistant cell lines. Radio-resistance was associated with sensitization to CDDP in PC-3, but not in DU145 cells. In general, DU145 cells tolerated higher CDDP concentrations than PC-3 cells regardless of acquired resistances. Furthermore, non-age-matched treatment-naïve PC-3 cells exhibited significantly different CDDP tolerances. Conclusion: Like patients, different mCRPC cell lines exhibit significant variability regarding CDDP tolerance. The presented in vitro data suggest that previous radiation treatment may be associated with a moderate sensitization to CDDP in an isogenic and age-matched setting. Therefore, previous radiotherapy or docetaxel chemotherapy might be no contraindication against initiation of platinum chemotherapy in selected mCRPC patients

    PIAS1 is increased in human prostate cancer and enhances proliferation through inhibition of p21

    Get PDF
    Prostate cancer development and progression are associated with alterations in expression and function of elements of cytokine networks, some of which can activate multiple signaling pathways. Protein inhibitor of activated signal transducers and activators of transcription (PIAS)1, a regulator of cytokine signaling, may be implicated in the modulation of cellular events during carcinogenesis. This study was designed to investigate the functional significance of PIAS1 in models of human prostate cancer. We demonstrate for the first time that PIAS1 protein expression is significantly higher in malignant areas of clinical prostate cancer specimens than in normal tissues, thus suggesting a growth-promoting role for PIAS1. Expression of PIAS1 was observed in the majority of tested prostate cancer cell lines. In addition, we investigated the mechanism by which PIAS1 might promote prostate cancer and found that down-regulation of PIAS1 leads to decreased proliferation and colony formation ability of prostate cancer cell lines. This decrease correlates with cell cycle arrest in the G0/G1 phase, which is mediated by increased expression of p21CIP1/WAF1. Furthermore, PIAS1 overexpression positively influences cell cycle progression and thereby stimulates proliferation, which can be mechanistically explained by a decrease in the levels of cellular p21. Taken together, our data reveal an important new role for PIAS1 in the regulation of cell proliferation in prostate cancer

    The Androgen Hormone-Induced Increase in Androgen Receptor Protein Expression Is Caused by the Autoinduction of the Androgen Receptor Translational Activity

    No full text
    The androgen receptor (AR) plays a central role in prostate, muscle, bone and adipose tissue. Moreover, dysregulated AR activity is a driving force in prostate cancer (PCa) initiation and progression. Consequently, antagonizing AR signalling cascades via antiandrogenic therapy is a crucial treatment option in PCa management. Besides, very high androgen levels also inhibit PCa cells’ growth, so this effect could also be applied in PCa therapy. However, on the molecular and cellular level, these mechanisms have hardly been investigated so far. Therefore, the present study describes the effects of varying androgen concentrations on the viability of PCa cells as well as localization, transactivation, and protein stability of the AR. For this purpose, cell viability was determined via WST1 assay. Alterations in AR transactivity were detected by qPCR analysis of AR target genes. A fluorescent AR fusion protein was used to analyse AR localization microscopically. Changes in AR protein expression were detected by Western blot. Our results showed that high androgen concentrations reduce the cell viability in LNCaP and C4-2 cell lines. In addition, androgens have been reported to increase AR transactivity, AR localization, and AR protein expression levels. However, high androgen levels did not reduce these parameters. Furthermore, this study revealed an androgen-induced increase in AR protein synthesis. In conclusion, inhibitory effects on cell viability by high androgen levels are due to AR downstream signalling or non-genomic AR activity. Moreover, hormonal activation of the AR leads to a self-induced stabilization of the receptor, resulting in increased AR activity. Therefore, in clinical use, a therapeutic reduction in androgen levels represents a clinical target and would lead to a decrease in AR activity and, thus, AR-driven PCa progression

    Comprehensive Evaluation of Multiple Approaches Targeting ABCB1 to Resensitize Docetaxel-Resistant Prostate Cancer Cell Lines

    No full text
    Docetaxel (DTX) is a mainstay in the treatment of metastatic prostate cancer. Failure of DTX therapy is often associated with multidrug resistance caused by overexpression of efflux membrane transporters of the ABC family such as the glycoprotein ABCB1. This study investigated multiple approaches targeting ABCB1 to resensitize DTX-resistant (DTXR) prostate cancer cell lines. In DU145 DTXR and PC-3 DTXR cells as well as age-matched parental controls, the expression of selected ABC transporters was analyzed by quantitative PCR, Western blot, flow cytometry and immunofluorescence. ABCB1 effluxing activity was studied using the fluorescent ABCB1 substrate rhodamine 123. The influence of ABCB1 inhibitors (elacridar, tariquidar), ABCB1-specific siRNA and inhibition of post-translational glycosylation on DTX tolerance was assessed by cell viability and colony formation assays. In DTXR cells, only ABCB1 was highly upregulated, which was accompanied by a strong effluxing activity and additional post-translational glycosylation of ABCB1. Pharmacological inhibition and siRNA-mediated knockdown of ABCB1 completely resensitized DTXR cells to DTX. Inhibition of glycosylation with tunicamycin affected DTX resistance partially in DU145 DTXR cells, which was accompanied by a slight intracellular accumulation and decreased effluxing activity of ABCB1. In conclusion, DTX resistance can be reversed by various strategies with small molecule inhibitors representing the most promising and feasible approach

    A Systematic Comparison of Antiandrogens Identifies Androgen Receptor Protein Stability as an Indicator for Treatment Response

    No full text
    Antiandrogen therapy is a primary treatment for patients with metastasized prostate cancer. Whilst the biologic mechanisms of antiandrogens have been extensively studied, the operating protocols used for the characterization of these drugs were not identical, limiting their comparison. Here, the antiandrogens Bicalutamide, Enzalutamide, Apalutamide, and Darolutamide were systematically compared using identical experimental setups. Androgen-dependent LNCaP and LAPC4 cells as well as androgen-independent C4-2 cells were treated with distinct concentrations of antiandrogens. Androgen receptor (AR)-mediated gene transactivation was determined using qPCR. Cell viability was measured by WST1 assay. Protein stability and AR localization were determined using western blot. Response to the tested antiandrogens across cellular backgrounds differed primarily in AR-mediated gene transactivation and cell viability. Antiandrogen treatment in LNCaP and LAPC4 cells resulted in AR protein level reduction, whereas in C4-2 cells marginal decreased AR protein was observed after treatment. In addition, AR downregulation was already detectable after 4 h, whereas reduced AR-mediated gene transactivation was not observed before 6 h. None of the tested antiandrogens displayed an advantage on the tested parameters within one cell line as opposed to the cellular background, which seems to be the primary influence on antiandrogen efficacy. Moreover, the results revealed a prominent role in AR protein stability. It is one of the first events triggered by antiandrogens and correlated with antiandrogen efficiency. Therefore, AR stability may surrogate antiandrogen response and may be a possible target to reverse antiandrogen resistance
    corecore