39 research outputs found

    Assessing Neurofilaments as Biomarkers of Neuroprotection in Progressive Multiple Sclerosis: From the MS-STAT Randomized Controlled Trial

    Get PDF
    BACKGROUND AND OBJECTIVES: Improved biomarkers of neuroprotective treatment are needed in progressive multiple sclerosis (PMS) to facilitate more efficient phase 2 trial design. The MS-STAT randomized controlled trial supported the neuroprotective potential of high-dose simvastatin in secondary progressive MS (SPMS). Here, we analyze serum from the MS-STAT trial to assess the extent to which neurofilament light (NfL) and neurofilament heavy (NfH), both promising biomarkers of neuroaxonal injury, may act as biomarkers of simvastatin treatment in SPMS. METHODS: The MS-STAT trial randomized patients to 80 mg simvastatin or placebo. Serum was analyzed for NfL and NfH using Simoa technology. We used linear mixed models to investigate the treatment effects of simvastatin compared with placebo on NfL and NfH. Additional models examined the relationships between neurofilaments and MRI and clinical measures of disease severity. RESULTS: A total of 140 patients with SPMS were included. There was no evidence for a simvastatin treatment effect on NfL or NfH: compared with placebo, NfL was 1.2% lower (95% CI 10.6% lower to 9.2% higher; p = 0.820) and NfH was 0.4% lower (95% CI 18.4% lower to 21.6% higher; p = 0.969) in the simvastatin treatment group. Secondary analyses suggested that higher NfL was associated with greater subsequent whole brain atrophy, higher T2 lesion volume, and more new/enlarging T2 lesions in the previous 12 months, as well as greater physical disability. There were no significant associations between NfH and MRI or clinical variables. DISCUSSION: We found no evidence of a simvastatin treatment effect on serum neurofilaments. While confirmation of the neuroprotective benefits of simvastatin is awaited from the ongoing phase 3 study (NCT03387670), our results suggest that treatments capable of slowing the rate of whole brain atrophy in SPMS, such as simvastatin, may act via mechanisms largely independent of neuroaxonal injury, as quantified by NfL. This has important implications for the design of future phase 2 clinical trials in PMS. TRIAL REGISTRATION INFORMATION: MS-STAT: NCT00647348. CLASSIFICATION OF EVIDENCE: This study provides class I evidence that simvastatin treatment does not have a large impact on either serum NfL or NfH, as quantified in this study, in SPMS

    Die Stoffwechselwirkungen der Schilddrüsenhormone

    Get PDF

    Determinants of recovery from post-COVID-19 dyspnoea: analysis of UK prospective cohorts of hospitalised COVID-19 patients and community-based controls

    Get PDF
    Background The risk factors for recovery from COVID-19 dyspnoea are poorly understood. We investigated determinants of recovery from dyspnoea in adults with COVID-19 and compared these to determinants of recovery from non-COVID-19 dyspnoea. Methods We used data from two prospective cohort studies: PHOSP-COVID (patients hospitalised between March 2020 and April 2021 with COVID-19) and COVIDENCE UK (community cohort studied over the same time period). PHOSP-COVID data were collected during hospitalisation and at 5-month and 1-year follow-up visits. COVIDENCE UK data were obtained through baseline and monthly online questionnaires. Dyspnoea was measured in both cohorts with the Medical Research Council Dyspnoea Scale. We used multivariable logistic regression to identify determinants associated with a reduction in dyspnoea between 5-month and 1-year follow-up. Findings We included 990 PHOSP-COVID and 3309 COVIDENCE UK participants. We observed higher odds of improvement between 5-month and 1-year follow-up among PHOSP-COVID participants who were younger (odds ratio 1.02 per year, 95% CI 1.01–1.03), male (1.54, 1.16–2.04), neither obese nor severely obese (1.82, 1.06–3.13 and 4.19, 2.14–8.19, respectively), had no pre-existing anxiety or depression (1.56, 1.09–2.22) or cardiovascular disease (1.33, 1.00–1.79), and shorter hospital admission (1.01 per day, 1.00–1.02). Similar associations were found in those recovering from non-COVID-19 dyspnoea, excluding age (and length of hospital admission). Interpretation Factors associated with dyspnoea recovery at 1-year post-discharge among patients hospitalised with COVID-19 were similar to those among community controls without COVID-19. Funding PHOSP-COVID is supported by a grant from the MRC-UK Research and Innovation and the Department of Health and Social Care through the National Institute for Health Research (NIHR) rapid response panel to tackle COVID-19. The views expressed in the publication are those of the author(s) and not necessarily those of the National Health Service (NHS), the NIHR or the Department of Health and Social Care. COVIDENCE UK is supported by the UK Research and Innovation, the National Institute for Health Research, and Barts Charity. The views expressed are those of the authors and not necessarily those of the funders

    Cohort Profile: Post-Hospitalisation COVID-19 (PHOSP-COVID) study

    Get PDF

    Clinical characteristics with inflammation profiling of long COVID and association with 1-year recovery following hospitalisation in the UK: a prospective observational study

    Get PDF
    Background No effective pharmacological or non-pharmacological interventions exist for patients with long COVID. We aimed to describe recovery 1 year after hospital discharge for COVID-19, identify factors associated with patient-perceived recovery, and identify potential therapeutic targets by describing the underlying inflammatory profiles of the previously described recovery clusters at 5 months after hospital discharge. Methods The Post-hospitalisation COVID-19 study (PHOSP-COVID) is a prospective, longitudinal cohort study recruiting adults (aged ≥18 years) discharged from hospital with COVID-19 across the UK. Recovery was assessed using patient-reported outcome measures, physical performance, and organ function at 5 months and 1 year after hospital discharge, and stratified by both patient-perceived recovery and recovery cluster. Hierarchical logistic regression modelling was performed for patient-perceived recovery at 1 year. Cluster analysis was done using the clustering large applications k-medoids approach using clinical outcomes at 5 months. Inflammatory protein profiling was analysed from plasma at the 5-month visit. This study is registered on the ISRCTN Registry, ISRCTN10980107, and recruitment is ongoing. Findings 2320 participants discharged from hospital between March 7, 2020, and April 18, 2021, were assessed at 5 months after discharge and 807 (32·7%) participants completed both the 5-month and 1-year visits. 279 (35·6%) of these 807 patients were women and 505 (64·4%) were men, with a mean age of 58·7 (SD 12·5) years, and 224 (27·8%) had received invasive mechanical ventilation (WHO class 7–9). The proportion of patients reporting full recovery was unchanged between 5 months (501 [25·5%] of 1965) and 1 year (232 [28·9%] of 804). Factors associated with being less likely to report full recovery at 1 year were female sex (odds ratio 0·68 [95% CI 0·46–0·99]), obesity (0·50 [0·34–0·74]) and invasive mechanical ventilation (0·42 [0·23–0·76]). Cluster analysis (n=1636) corroborated the previously reported four clusters: very severe, severe, moderate with cognitive impairment, and mild, relating to the severity of physical health, mental health, and cognitive impairment at 5 months. We found increased inflammatory mediators of tissue damage and repair in both the very severe and the moderate with cognitive impairment clusters compared with the mild cluster, including IL-6 concentration, which was increased in both comparisons (n=626 participants). We found a substantial deficit in median EQ-5D-5L utility index from before COVID-19 (retrospective assessment; 0·88 [IQR 0·74–1·00]), at 5 months (0·74 [0·64–0·88]) to 1 year (0·75 [0·62–0·88]), with minimal improvements across all outcome measures at 1 year after discharge in the whole cohort and within each of the four clusters. Interpretation The sequelae of a hospital admission with COVID-19 were substantial 1 year after discharge across a range of health domains, with the minority in our cohort feeling fully recovered. Patient-perceived health-related quality of life was reduced at 1 year compared with before hospital admission. Systematic inflammation and obesity are potential treatable traits that warrant further investigation in clinical trials. Funding UK Research and Innovation and National Institute for Health Research

    Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: a pooled analysis of 1201 population-representative studies with 104 million participants

    Get PDF
    Background: Hypertension can be detected at the primary health-care level and low-cost treatments can effectively control hypertension. We aimed to measure the prevalence of hypertension and progress in its detection, treatment, and control from 1990 to 2019 for 200 countries and territories.Methods: We used data from 1990 to 2019 on people aged 30-79 years from population-representative studies with measurement of blood pressure and data on blood pressure treatment. We defined hypertension as having systolic blood pressure 140 mm Hg or greater, diastolic blood pressure 90 mm Hg or greater, or taking medication for hypertension. We applied a Bayesian hierarchical model to estimate the prevalence of hypertension and the proportion of people with hypertension who had a previous diagnosis (detection), who were taking medication for hypertension (treatment), and whose hypertension was controlled to below 140/90 mm Hg (control). The model allowed for trends over time to be non-linear and to vary by age.Findings: The number of people aged 30-79 years with hypertension doubled from 1990 to 2019, from 331 (95% credible interval 306-359) million women and 317 (292-344) million men in 1990 to 626 (584-668) million women and 652 (604-698) million men in 2019, despite stable global age-standardised prevalence. In 2019, age-standardised hypertension prevalence was lowest in Canada and Peru for both men and women; in Taiwan, South Korea, Japan, and some countries in western Europe including Switzerland, Spain, and the UK for women; and in several low-income and middle-income countries such as Eritrea, Bangladesh, Ethiopia, and Solomon Islands for men. Hypertension prevalence surpassed 50% for women in two countries and men in nine countries, in central and eastern Europe, central Asia, Oceania, and Latin America. Globally, 59% (55-62) of women and 49% (46-52) of men with hypertension reported a previous diagnosis of hypertension in 2019, and 47% (43-51) of women and 38% (35-41) of men were treated. Control rates among people with hypertension in 2019 were 23% (20-27) for women and 18% (16-21) for men. In 2019, treatment and control rates were highest in South Korea, Canada, and Iceland (treatment >70%; control >50%), followed by the USA, Costa Rica, Germany, Portugal, and Taiwan. Treatment rates were less than 25% for women and less than 20% for men in Nepal, Indonesia, and some countries in sub-Saharan Africa and Oceania. Control rates were below 10% for women and men in these countries and for men in some countries in north Africa, central and south Asia, and eastern Europe. Treatment and control rates have improved in most countries since 1990, but we found little change in most countries in sub-Saharan Africa and Oceania. Improvements were largest in high-income countries, central Europe, and some upper-middle-income and recently high-income countries including Costa Rica, Taiwan, Kazakhstan, South Africa, Brazil, Chile, Turkey, and Iran.Interpretation: Improvements in the detection, treatment, and control of hypertension have varied substantially across countries, with some middle-income countries now outperforming most high-income nations. The dual approach of reducing hypertension prevalence through primary prevention and enhancing its treatment and control is achievable not only in high-income countries but also in low-income and middle-income settings.Copyright (C) 2021 World Health Organization; licensee Elsevier.</p
    corecore