23 research outputs found

    Was the Oligocene-Miocene a time of fire and rain? Insights from brown coals of the southeastern Australia Gippsland Basin

    No full text
    Lithotype cycles (ranging from 10 to 30 m thick) in the brown coals of the Latrobe Valley, Gippsland Basin, Australia, display well-developed lightening-upward trends. Cycle tops are characterized by abrupt and unconformable boundaries with the overlying cycle. Geological, geochemical, palynological and macrofossil evidence is consistent with a relative drying (terrestrialization) upward depositional model for the cycles. The abundance of charcoal in dark lithotypes near the cycle bases is explained by the fire-prone and highly flammable nature of the herbaceous/reed wetlands, in common with similar modem wetlands in modem Australasia, in which the dark lithotypes are suggested to have formed. This, together with the greater preservation potential of charcoal in subaqueous environments, results in the wettest facies of the Latrobe Valley coals having the highest charcoal contents. Despite prevailing warm, wet climate conditions and the predominance of rainforests that are suggested to have characterized the Cenozoic of southern Australia, some swamp taxa were clearly already pre-adapted to tolerate fire and are likely to have been the ancestors of the fire-adapted floral communities of modem arid Australia. (c) 2014 Elsevier B.V. All rights reserved

    Eocene to Oligocene high paleolatitude neritic record of Oi-1 glaciation in the Otway Basin southeast Australia

    Get PDF
    Multiple stable isotope investigations from upper Eocene to lower Oligocene deep-water marine sequences record the transition from global greenhouse to the icehouse conditions (Oi-1 glacial). While Southern Ocean high latitude deep sea records of this transition are well known, their shallow marine equivalents are rare and have the potential to record the eustatic and oceanic consequences of Paleogene glacial variability. The well-known high paleolatitude (~55°S) neritic carbonate sequence at Browns Creek and Castle Cove in the Otway Basin in southeast Australia spans the Eocene-Oligocene boundary. During this time the area lay on the northeastern margin of the Australo-Antarctic Gulf facing the evolving Southern Ocean. The importance of this record has been hampered by a lack of a consistent stratigraphy and contradictory microfossil interpretations. To reconcile these issues we combine new bio-, chemo- and lithostratigraphic analyses of the outcrops and a new core (Colac- 2) with pre-existing data to revise the stratigraphy. This confirms the middle/upper Eocene boundary is near the base of the section. The overlying upper Eocene siliciclastic strata are truncated by an unconformity (of ~0.8 Ma in duration) and overlain by glauconitic sand (the Notrostrea greensand) deposited after ~35.9 Ma. Subsequently deepening to middle to outer neritic depths deposited cyclic carbonates. Shallowing after ~35 Ma deposited laterally variable calcareous siliciclastic facies. These strata were tilted and eroded prior to 34 Ma leading to shallow water facies that may have been subaerially exposed during uplift. Brachiopod strontium isotope dates and an 0.5‰ carbon isotope excursion above this unconformity suggests the top of the Browns Creek and the base of the Castle Cove section correlate to Eocene-Oligocene transition (EOT-1) at ~34 Ma. The subsequent persistence of positive C/O isotope values above this level records the transition to the Oi-1 glaciation at ~33.7 Ma. Strong cyclicity in the inner shelf Castle Cove limestone is interpreted to record the commencement of obliquity dominated glacio-eustacy during the Oi-1 glacial phase. The shallowing from outer to inner shelf palaeodepths from the late Eocene to the early Oligocene is likely related to the onset of cryosphere expansion, however, palaeodepth estimates are complicated by the onset of regional compressional tectonism at the Eocene/Oligocene boundary that caused localized tilting and an unconformity with possible antisiphoning effects in this near-field site

    Measuring Aerosol and Heavy Metal Deposition on Urban Woodland and Grass Using Inventories of 210Pb and Metal Concentrations in Soil

    No full text
    The deposition of aerosols to trees has proved very difficult to quantify, especially in complex landscapes. However, trees are widely quoted to be efficient scavengers of particles from the atmosphere, and a growing proportion of the pollutant burden in the atmosphere is present in the aerosol phase. In this study, the deposition of aerosols onto woodland and grass was quantified at a range of locations throughout the West Midlands of England. The sites included mature deciduous woodland in Edgbaston, and Moseley, and mixed woodland at sites within Sutton Park, a large area of semi-natural vegetation. Aerosol deposition to areas of grassland close to the woodland at each site was also measured. Detailed inventories of 210Pb in soils within the woodland and in grassland soils, together with concentrations in the atmosphere and precipitation, provided the necessary data to calculate the long-term (about 40 years) annual deposition of sub-micron aerosols onto grassland and woodland. The soil inventories of 210Pb under woodland exceeded those under grass, by between 22% and 60%, with dry deposition contributing 24% of the total input flux for grass and 47% for woodland. The aerosol dry deposition velocity to grassland averaged 3.3 mm s-1 and 9 mm s-1 for woodland. The large deposition rates of aerosols onto woodland relative to grass or other short vegetation (× 3), and accumulation of heavy metals within the surface horizons of organic soils, leads to large concentrations in soils of urban woodland. Concentrations in the top 10 cm of these woodland soils averaged 252 mg kg-1 for Pb with peaks to 400 mg kg-1. Concentrations of Cd averaged 1.4 mg kg-1, Cu, 126 mg kg-1, Ni 23 mg kg-1 and Zn 173 mg kg-1. The accumulated Pb in urban woodland soils is shown to be large relative to UK emission

    Walking Behavior of Zoo Elephants: Associations between GPS-Measured Daily Walking Distances and Environmental Factors, Social Factors, and Welfare Indicators

    Get PDF
    Research with humans and other animals suggests that walking benefits physical health. Perhaps because these links have been demonstrated in other species, it has been suggested that walking is important to elephant welfare, and that zoo elephant exhibits should be designed to allow for more walking. Our study is the first to address this suggestion empirically by measuring the mean daily walking distance of elephants in North American zoos, determining the factors that are associated with variations in walking distance, and testing for associations between walking and welfare indicators. We used anklets equipped with GPS data loggers to measure outdoor daily walking distance in 56 adult female African (n = 33) and Asian (n = 23) elephants housed in 30 North American zoos. We collected 259 days of data and determined associations between distance walked and social, housing, management, and demographic factors. Elephants walked an average of 5.3 km/day with no significant difference between species. In our multivariable model, more diverse feeding regimens were correlated with increased walking, and elephants who were fed on a temporally unpredictable feeding schedule walked 1.29 km/day more than elephants fed on a predictable schedule. Distance walked was also positively correlated with an increase in the number of social groupings and negatively correlated with age. We found a small but significant negative correlation between distance walked and nighttime Space Experience, but no other associations between walking distances and exhibit size were found. Finally, distance walked was not related to health or behavioral outcomes including foot health, joint health, body condition, and the performance of stereotypic behavior, suggesting that more research is necessary to determine explicitly how differences in walking may impact elephant welfare
    corecore