5,773 research outputs found
Substructure Discovery Using Minimum Description Length and Background Knowledge
The ability to identify interesting and repetitive substructures is an
essential component to discovering knowledge in structural data. We describe a
new version of our SUBDUE substructure discovery system based on the minimum
description length principle. The SUBDUE system discovers substructures that
compress the original data and represent structural concepts in the data. By
replacing previously-discovered substructures in the data, multiple passes of
SUBDUE produce a hierarchical description of the structural regularities in the
data. SUBDUE uses a computationally-bounded inexact graph match that identifies
similar, but not identical, instances of a substructure and finds an
approximate measure of closeness of two substructures when under computational
constraints. In addition to the minimum description length principle, other
background knowledge can be used by SUBDUE to guide the search towards more
appropriate substructures. Experiments in a variety of domains demonstrate
SUBDUE's ability to find substructures capable of compressing the original data
and to discover structural concepts important to the domain. Description of
Online Appendix: This is a compressed tar file containing the SUBDUE discovery
system, written in C. The program accepts as input databases represented in
graph form, and will output discovered substructures with their corresponding
value.Comment: See http://www.jair.org/ for an online appendix and other files
  accompanying this articl
Combining galaxy and 21cm surveys
Acoustic waves traveling through the early Universe imprint a characteristic
scale in the clustering of galaxies, QSOs and inter-galactic gas. This scale
can be used as a standard ruler to map the expansion history of the Universe, a
technique known as Baryon Acoustic Oscillations (BAO). BAO offer a
high-precision, low-systematics means of constraining our cosmological model.
The statistical power of BAO measurements can be improved if the `smearing' of
the acoustic feature by non-linear structure formation is undone in a process
known as reconstruction. In this paper we use low-order Lagrangian perturbation
theory to study the ability of cm experiments to perform reconstruction
and how augmenting these surveys with galaxy redshift surveys at relatively low
number densities can improve performance. We find that the critical number
density which must be achieved in order to benefit cm surveys is set by
the linear theory power spectrum near its peak, and corresponds to densities
achievable by upcoming surveys of emission line galaxies such as eBOSS and
DESI. As part of this work we analyze reconstruction within the framework of
Lagrangian perturbation theory with local Lagrangian bias, redshift-space
distortions, -dependent noise and anisotropic filtering schemes.Comment: 10 pages, final version to appear in MNRAS, helpful suggestions from
  referee and others include
The economic optimisation of the main parameters of the 3-GeV electron booster synchrotron for DIAMOND
External Shear in Quadruply Imaged Lens Systems
We use publicly available N-body simulations and semi-analytic models of
galaxy formation to estimate the levels of external shear due to structure near
the lens in gravitational lens systems. We also describe two selection effects,
specific to four-image systems, that enhance the probability of observing
systems to have higher external shear. Ignoring additional contributions from
"cosmic shear" and assuming that lens galaxies are not significantly flattened,
we find that the mean shear at the position of a quadruple lens galaxy is 0.11,
the rms shear is roughly 0.15, and there is roughly a 45% likelihood of
external shear greater than 0.1. This is much larger than previous estimates
and in good agreement with typical measured external shear. The higher shear
primarily stems from the tendency of early-type galaxies, which are the
majority of lenses, to reside in overdense regions.Comment: 5 pages, 2 figures, ApJ in press, minor revision
A Sunyaev-Zel'dovich Effect Survey for High Redshift Clusters
Interferometric observations of the Sunyaev-Zel'dovich Effect (SZE) toward
clusters of galaxies provide sensitive cosmological probes. We present results
from 1 cm observations (at BIMA and OVRO) of a large, intermediate redshift
cluster sample. In addition, we describe a proposed, higher sensitivity array
which will enable us to survey large portions of the sky. Simulated
observations indicate that we will be able to survey one square degree of sky
per month to sufficient depth that we will detect all galaxy clusters more
massive than 2x10^{14} h^{-1}_{50}M_\odot, regardless of their redshift. We
describe the cluster yield and resulting cosmological constraints from such a
survey.Comment: 7 pages, 6 figures, latex, contribution to VLT Opening Symposiu
Searching for "monogenic diabetes" in dogs using a candidate gene approach
BACKGROUND: Canine diabetes is a common endocrine disorder with an estimated breed-related prevalence ranging from 0.005% to 1.5% in pet dogs. Increased prevalence in some breeds suggests that diabetes in dogs is influenced by genetic factors and similarities between canine and human diabetes phenotypes suggest that the same genes might be associated with disease susceptibility in both species. Between 1-5% of human diabetes cases result from mutations in a single gene, including maturity onset diabetes of the adult (MODY) and neonatal diabetes mellitus (NDM). It is not clear whether monogenic forms of diabetes exist within some dog breeds. Identification of forms of canine monogenic diabetes could help to resolve the heterogeneity of the condition and lead to development of breed-specific genetic tests for diabetes susceptibility. RESULTS: Seventeen dog breeds were screened for single nucleotide polymorphisms (SNPs) in eighteen genes that have been associated with human MODY/NDM. Six SNP associations were found from five genes, with one gene (ZFP57) being associated in two different breeds. CONCLUSIONS: Some of the genes that have been associated with susceptibility to MODY and NDM in humans appear to also be associated with canine diabetes, although the limited number of associations identified in this study indicates canine diabetes is a heterogeneous condition and is most likely to be a polygenic trait in most dog breeds. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/2052-6687-1-8) contains supplementary material, which is available to authorized users
Possible configurations of the magnetic field in the outer magnetosphere during geomagnetic polarity reversals
International audiencePossible configurations of the magnetic field in the outer magnetosphere during geomagnetic polarity reversals are investigated by considering the idealized problem of a magnetic multipole of order m and degree n located at the centre of a spherical cavity surrounded by a boundless perfect diamagnetic medium. In this illustrative idealization, the fixed spherical (magnetopause) boundary layer behaves as a perfectly conducting surface that shields the external diamagnetic medium from the compressed multipole magnetic field, which is therefore confined within the spherical cavity. For a general magnetic multipole of degree n, the non-radial components of magnetic induction just inside the magnetopause are increased by the factor {1 + [(n + 1)/n]} relative to their corresponding values in the absence of the perfectly conducting spherical magnetopause. An exact equation is derived for the magnetic field lines of an individual zonal (m = 0), or axisymmetric, magnetic multipole of arbitrary degree n located at the centre of the magnetospheric cavity. For such a zonal magnetic multipole, there are always two neutral points and n-1 neutral rings on the spherical magnetopause surface. The two neutral points are located at the poles of the spherical magnetopause. If n is even, one of the neutral rings is coincident with the equator; otherwise, the neutral rings are located symmetrically with respect to the equator. The actual existence of idealized higher-degree (n>1) axisymmetric magnetospheres would necessarily imply multiple (n + 1) magnetospheric cusps and multiple (n) ring currents. Exact equations are also derived for the magnetic field lines of an individual non-axisymmetric magnetic multipole, confined by a perfectly conducting spherical magnetopause, in two special cases; namely, a symmetric sectorial multipole (m = n) and an antisymmetric sectorial multipole (m = n-1). For both these non-axisymmetric magnetic multipoles, there exists on the spherical magnetopause surface a set of neutral points linked by a network of magnetic field lines. Novel magnetospheric processes are likely to arise from the existence of magnetic neutral lines that extend from the magnetopause to the surface of the Earth. Finally, magnetic field lines that are confined to, or perpendicular to, either special meridional planes or the equatorial plane, when the multipole is in free space, continue to be confined to, or perpendicular to, these same planes when the perfectly conducting magnetopause is present
- …
