449 research outputs found

    Extensive differential protein phosphorylation as intraerythrocytic Plasmodium falciparumschizonts develop into extracellular invasive merozoites

    Get PDF
    Pathology of the most lethal form of malaria is caused by Plasmodium falciparum asexual blood stages and initiated by merozoite invasion of erythrocytes. We present a phosphoproteome analysis of extracellular merozoites revealing 1765 unique phosphorylation sites including 785 sites not previously detected in schizonts. All MS data have been deposited in the ProteomeXchange with identifier PXD001684 (http://proteomecentral.proteomexchange.org/dataset/PXD001684). The observed differential phosphorylation between extra and intraerythrocytic life-cycle stages was confirmed using both phospho-site and phospho-motif specific antibodies and is consistent with the core motif [K/R]xx[pS/pT] being highly represented in merozoite phosphoproteins. Comparative bioinformatic analyses highlighted protein sets and pathways with established roles in invasion. Within the merozoite phosphoprotein interaction network a subnetwork of 119 proteins with potential roles in cellular movement and invasion was identified and suggested that it is coregulated by a further small subnetwork of protein kinase A (PKA), two calcium-dependent protein kinases (CDPKs), a phosphatidyl inositol kinase (PI3K), and a GCN2-like elF2-kinase with a predicted role in translational arrest and associated changes in the ubquitinome. To test this notion experimentally, we examined the overall ubiquitination level in intracellular schizonts versus extracellular merozoites and found it highly upregulated in merozoites. We propose that alterations in the phosphoproteome and ubiquitinome reflect a starvation-induced translational arrest as intracellular schizonts transform into extracellular merozoites

    Extracellular ATP triggers proteolysis and cytosolic Ca²⁺ rise in Plasmodium berghei and Plasmodium yoelii malaria parasites.

    Get PDF
    BACKGROUND: Plasmodium has a complex cell biology and it is essential to dissect the cell-signalling pathways underlying its survival within the host. METHODS: Using the fluorescence resonance energy transfer (FRET) peptide substrate Abz-AIKFFARQ-EDDnp and Fluo4/AM, the effects of extracellular ATP on triggering proteolysis and Ca²⁺ signalling in Plasmodium berghei and Plasmodium yoelii malaria parasites were investigated. RESULTS: The protease activity was blocked in the presence of the purinergic receptor blockers suramin (50 μM) and PPADS (50 μM) or the extracellular and intracellular calcium chelators EGTA (5 mM) and BAPTA/AM (25, 100, 200 and 500 μM), respectively for P. yoelii and P. berghei. Addition of ATP (50, 70, 200 and 250 μM) to isolated parasites previously loaded with Fluo4/AM in a Ca²⁺-containing medium led to an increase in cytosolic calcium. This rise was blocked by pre-incubating the parasites with either purinergic antagonists PPADS (50 μM), TNP-ATP (50 μM) or the purinergic blockers KN-62 (10 μM) and Ip5I (10 μM). Incubating P. berghei infected cells with KN-62 (200 μM) resulted in a changed profile of merozoite surface protein 1 (MSP1) processing as revealed by western blot assays. Moreover incubating P. berghei for 17 h with KN-62 (10 μM) led to an increase in rings forms (82% ± 4, n = 11) and a decrease in trophozoite forms (18% ± 4, n = 11). CONCLUSIONS: The data clearly show that purinergic signalling modulates P. berghei protease(s) activity and that MSP1 is one target in this pathway

    The Spitzer South Pole Telescope Deep Field Survey: Linking galaxies and halos at z=1.5

    Full text link
    We present an analysis of the clustering of high-redshift galaxies in the recently completed 94 deg2^2 Spitzer-SPT Deep Field survey. Applying flux and color cuts to the mid-infrared photometry efficiently selects galaxies at z1.5z\sim1.5 in the stellar mass range 10101011M10^{10}-10^{11}M_\odot, making this sample the largest used so far to study such a distant population. We measure the angular correlation function in different flux-limited samples at scales >6>6^{\prime \prime} (corresponding to physical distances >0.05>0.05 Mpc) and thereby map the one- and two-halo contributions to the clustering. We fit halo occupation distributions and determine how the central galaxy's stellar mass and satellite occupation depend on the halo mass. We measure a prominent peak in the stellar-to-halo mass ratio at a halo mass of log(Mhalo/M)=12.44±0.08\log(M_{\rm halo} / M_\odot) = 12.44\pm0.08, 4.5 times higher than the z=0z=0 value. This supports the idea of an evolving mass threshold above which star formation is quenched. We estimate the large-scale bias in the range bg=24b_g=2-4 and the satellite fraction to be fsat0.2f_\mathrm{sat}\sim0.2, showing a clear evolution compared to z=0z=0. We also find that, above a given stellar mass limit, the fraction of galaxies that are in similar mass pairs is higher at z=1.5z=1.5 than at z=0z=0. In addition, we measure that this fraction mildly increases with the stellar mass limit at z=1.5z=1.5, which is the opposite of the behavior seen at low-redshift.Comment: 32 pages, 22 figures. Published in MNRA

    Targeted disruption of py235ebp-1: Invasion of erythrocytes by Plasmodium yoelii using an alternative Py235 erythrocyte binding protein

    Get PDF
    Plasmodium yoelii YM asexual blood stage parasites express multiple members of the py235 gene family, part of the super-family of genes including those coding for Plasmodium vivax reticulocyte binding proteins and Plasmodium falciparum RH proteins. We previously identified a Py235 erythrocyte binding protein (Py235EBP-1, encoded by the PY01365 gene) that is recognized by protective mAb 25.77. Proteins recognized by a second protective mAb 25.37 have been identified by mass spectrometry and are encoded by two genes, PY01185 and PY05995/PY03534. We deleted the PY01365 gene and examined the phenotype. The expression of the members of the py235 family in both the WT and gene deletion parasites was measured by quantitative RT-PCR and RNA-Seq. py235ebp-1 expression was undetectable in the knockout parasite, but transcription of other members of the family was essentially unaffected. The knockout parasites continued to react with mAb 25.77; and the 25.77-binding proteins in these parasites were the PY01185 and PY05995/PY03534 products. The PY01185 product was also identified as erythrocyte binding. There was no clear change in erythrocyte invasion profile suggesting that the PY01185 gene product (designated PY235EBP-2) is able to fulfill the role of EBP-1 by serving as an invasion ligand although the molecular details of its interaction with erythrocytes have not been examined. The PY01365, PY01185, and PY05995/PY03534 genes are part of a distinct subset of the py235 family. In P. falciparum, the RH protein genes are under epigenetic control and expression correlates with binding to distinct erythrocyte receptors and specific invasion pathways, whereas in P. yoelii YM all the genes are expressed and deletion of one does not result in upregulation of another. We propose that simultaneous expression of multiple Py235 ligands enables invasion of a wide range of host erythrocytes even in the presence of antibodies to one or more of the proteins and that this functional redundancy at the protein level gives the parasite phenotypic plasticity in the absence of differences in gene expression

    Function of Region I and II Adhesive Motifs of Plasmodium falciparum Circumsporozoite Protein in Sporozoite Motility and Infectivity

    Get PDF
    The circumsporozoite protein of Plasmodium falciparum contains two conserved motifs (regions I and II) that have been proposed to interact with mosquito and vertebrate host molecules in the process of sporozoite invasion of salivary glands and hepatocytes, respectively. To study the function of this protein we have replaced the endogenous circumsporozoite protein gene of Plasmodium berghei with that of P. falciparum and with versions lacking either region I or region II. We show here that P. falciparum circumsporozoite protein functions in rodent parasite and that P. berghei sporozoites carrying the P. falciparum CS gene develop normally, are motile, invade mosquito salivary glands, and infect the vertebrate host. Region I-deficient sporozoites showed no impairment of motility or infectivity in either vector or vertebrate host. Disruption of region II abolished sporozoite motility and dramatically impaired their ability to invade mosquito salivary glands and infect the vertebrate host. These data shed new light on the role of the CS protein in sporozoite motility and infectivity

    Suppressive and additive effects in protection mediated by combinations of monoclonal antibodies specific for merozoite surface protein 1 of Plasmodium yoelii

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The merozoite surface protein (MSP)-1 is a target antigen of protective immunity and a malaria vaccine candidate. The nature of this protective immune response warrants further investigation: although specific antibody is thought to play a major role, the mechanisms of protection are still unclear. Monoclonal antibodies (mAbs) specific for the C-terminus of MSP-1 from <it>Plasmodium yoelii </it>have been shown previously to provide protection against challenge infection when administered by passive immunization to mice. Three protective mAbs were re-examined and, in particular, the effect of combinations of antibodies on the protection provided was studied. It was found that a combination of two antibodies can either provide additive protective effects or result in a suppression of protection. In this report the importance of antibody subclass and epitope specificity in the outcome of these passive immunization experiments are discussed.</p> <p>Methods</p> <p>The minimum protective dose (MPD) for each mAb was determined, and then combinations of antibody at their MPD were investigated for their ability to control parasitaemia and promote survival in groups of mice. Mice were inoculated over three days with the MPD and challenged with a blood stage infection of the virulent <it>P. yoelii </it>17 XL. The resultant parasitaemia was assessed daily on Giemsa-stained blood films. Following the infection the presence of MSP-1 specific antibodies in the sera was monitored, and the proliferative responses of cells in the spleen of protected mice were measured.</p> <p>Results</p> <p>Combining antibodies resulted in either an additive effect on protection, with reduced peak parasitaemia and better survival, or resulted in a suppression of protection over that achieved by a single antibody alone. An additive effect was observed when B6 and F5 that have the same isotype and similar fine specificity, were combined. However, a combination of mAb D3, an IgG2a, with either B6 or F5 (both IgG3) suppressed protection, an effect that may have been due to the combination of different isotypes or to the different fine specificity of the antibodies.</p> <p>Conclusions</p> <p>These results suggest that a combination of protective antibodies with either the same or different isotypes can produce either an additive or a suppressive effect in passive immunization. This phenomenon may be important in better understanding immunity in this experimental mouse model of malaria.</p

    Meiosis in Plasmodium:How does it work?

    Get PDF
    Meiosis is sexual cell division, a process in eukaryotes whereby haploid gametes are produced. Compared to canonical model eukaryotes, meiosis in apicomplexan parasites appears to diverge from the process with respect to the molecular mechanisms involved; the biology of Plasmodium meiosis, and its regulation by means of post-translational modification, are largely unexplored. Here, we discuss the impact of technological advances in cell biology, evolutionary bioinformatics, and genome-wide functional studies on our understanding of meiosis in the Apicomplexa. These parasites, including Plasmodium falciparum, Toxoplasma gondii, and Eimeria spp., have significant socioeconomic impact on human and animal health. Understanding this key stage during the parasite's life cycle may well reveal attractive targets for therapeutic intervention.</p

    Characterization of the repertoire diversity of the Plasmodium falciparum stevor multigene family in laboratory and field isolates

    Get PDF
    BACKGROUND: The evasion of host immune response by the human malaria parasite Plasmodium falciparum has been linked to expression of a range of variable antigens on the infected erythrocyte surface. Several genes are potentially involved in this process with the var, rif and stevor multigene families being the most likely candidates and coding for rapidly evolving proteins. The high sequence diversity of proteins encoded by these gene families may have evolved as an immune evasion strategy that enables the parasite to establish long lasting chronic infections. Previous findings have shown that the hypervariable region (HVR) of STEVOR has significant sequence diversity both within as well as across different P. falciparum lines. However, these studies did not address whether or not there are ancestral stevor that can be found in different parasites. METHODS: DNA and RNA sequences analysis as well as phylogenetic approaches were used to analyse the stevor sequence repertoire and diversity in laboratory lines and Kilifi (Kenya) fresh isolates. RESULTS: Conserved stevor genes were identified in different P. falciparum isolates from different global locations. Consistent with previous studies, the HVR of the stevor gene family was found to be highly divergent both within and between isolates. Importantly phylogenetic analysis shows some clustering of stevor sequences both within a single parasite clone as well as across different parasite isolates. CONCLUSION: This indicates that the ancestral P. falciparum parasite genome already contained multiple stevor genes that have subsequently diversified further within the different P. falciparum populations. It also confirms that STEVOR is under strong selection pressure

    The malaria parasite cyclic GMP-dependent protein kinase plays a central role in blood-stage schizogony.

    No full text
    A role for the Plasmodium falciparum cyclic GMP (cGMP)-dependent protein kinase (PfPKG) in gametogenesis in the malaria parasite was elucidated previously. In the present study we examined the role of PfPKG in the asexual blood-stage of the parasite life cycle, the stage that causes malaria pathology. A specific PKG inhibitor (compound 1, a trisubstituted pyrrole) prevented the progression of P. falciparum schizonts through to ring stages in erythrocyte invasion assays. Addition of compound 1 to ring-stage parasites allowed normal development up to 30 h postinvasion, and segmented schizonts were able to form. However, synchronized schizonts treated with compound 1 for > or =6 h became large and dysmorphic and were unable to rupture or liberate merozoites. To conclusively demonstrate that the effect of compound 1 on schizogony was due to its selective action on PfPKG, we utilized genetically manipulated P. falciparum parasites expressing a compound 1-insensitive PfPKG. The mutant parasites were able to complete schizogony in the presence of compound 1 but not in the presence of the broad-spectrum protein kinase inhibitor staurosporine. This shows that PfPKG is the primary target of compound 1 during schizogony and provides direct evidence of a role for PfPKG in this process. Discovery of essential roles for the P. falciparum PKG in both asexual and sexual development demonstrates that cGMP signaling is a key regulator of both of these crucial life cycle phases and defines this molecule as an exciting potential drug target for both therapeutic and transmission blocking action against malaria
    corecore