45 research outputs found

    Emergence of a New Highly Successful Acapsular Group A Streptococcus Clade of Genotype emm89 in the United Kingdom

    Get PDF
    UNLABELLED: Group A Streptococcus (GAS) genotype emm89 is increasingly recognized as a leading cause of disease worldwide, yet factors that underlie the success of this emm type are unknown. Surveillance identified a sustained nationwide increase in emm89 invasive GAS disease in the United Kingdom, prompting longitudinal investigation of this genotype. Whole-genome sequencing revealed a recent dramatic shift in the emm89 population with the emergence of a new clade that increased to dominance over previous emm89 variants. Temporal analysis indicated that the clade arose in the early 1990s but abruptly increased in prevalence in 2008, coinciding with an increased incidence of emm89 infections. Although standard variable typing regions (emm subtype, tee type, sof type, and multilocus sequence typing [MLST]) remained unchanged, uniquely the emergent clade had undergone six distinct regions of homologous recombination across the genome compared to the rest of the sequenced emm89 population. Two of these regions affected known virulence factors, the hyaluronic acid capsule and the toxins NADase and streptolysin O. Unexpectedly, and in contrast to the rest of the sequenced emm89 population, the emergent clade-associated strains were genetically acapsular, rendering them unable to produce the hyaluronic acid capsule. The emergent clade-associated strains had also acquired an NADase/streptolysin O locus nearly identical to that found in emm12 and modern emm1 strains but different from the rest of the sequenced emm89 population. The emergent clade-associated strains had enhanced expression of NADase and streptolysin O. The genome remodeling in the new clade variant and the resultant altered phenotype appear to have conferred a selective advantage over other emm89 variants and may explain the changes observed in emm89 GAS epidemiology. IMPORTANCE: Sudden upsurges or epidemic waves are common features of group A streptococcal disease. Although the mechanisms behind such changes are largely unknown, they are often associated with an expansion of a single genotype within the population. Using whole-genome sequencing, we investigated a nationwide increase in invasive disease caused by the genotype emm89 in the United Kingdom. We identified a new clade variant that had recently emerged in the emm89 population after having undergone several core genomic recombination-related changes, two of which affected known virulence factors. An unusual finding of the new variant was the loss of the hyaluronic acid capsule, previously thought to be essential for causing invasive disease. A further genomic adaptation in the NADase/streptolysin O locus resulted in enhanced production of these toxins. Recombination-related genome remodeling is clearly an important mechanism in group A Streptococcus that can give rise to more successful and potentially more pathogenic variants

    Immersive multi-user decision training games with ARLearn

    Get PDF
    Serious gaming approaches so far focus mainly on skill development, motivational aspects or providing immersive learning situations. Little work has been reported to foster awareness and decision competencies in complex deci-sion situations involving incomplete information and multiple stakeholders. We address this issue exploring the technical requirements and possibilities to de-sign games for such situations in three case studies: a hostage taking situation, a multi-stakeholder logistics case, and a health-care related emergency case. To implement the games, we use a multi-user enabled mobile game development platform (ARLearn). We describe the underlying real world situations and edu-cational challenges and analyse how these are reflected in the ARLearn games realized. Based on these cases we propose a way to increase the immersiveness of mobile learning games.SALOM

    Models of quintessence coupled to the electromagnetic field and the cosmological evolution of alpha

    Full text link
    We study the change of the effective fine structure constant in the cosmological models of a scalar field with a non-vanishing coupling to the electromagnetic field. Combining cosmological data and terrestrial observations we place empirical constraints on the size of the possible coupling and explore a large class of models that exhibit tracking behavior. The change of the fine structure constant implied by the quasar absorption spectra together with the requirement of tracking behavior impose a lower bound of the size of this coupling. Furthermore, the transition to the quintessence regime implies a narrow window for this coupling around 10510^{-5} in units of the inverse Planck mass. We also propose a non-minimal coupling between electromagnetism and quintessence which has the effect of leading only to changes of alpha determined from atomic physics phenomena, but leaving no observable consequences through nuclear physics effects. In doing so we are able to reconcile the claimed cosmological evidence for a changing fine structure constant with the tight constraints emerging from the Oklo natural nuclear reactor.Comment: 13 pages, 10 figures, RevTex, new references adde

    Itinerant Ferromagnetism in the Periodic Anderson Model

    Full text link
    We introduce a novel mechanism for itinerant ferromagnetism, based on a simple two-band model. The model includes an uncorrelated and dispersive band hybridized with a second band which is narrow and correlated. The simplest Hamiltonian containing these ingredients is the Periodic Anderson Model (PAM). Using quantum Monte Carlo and analytical methods, we show that the PAM and an extension of it contain the new mechanism and exhibit a non-saturated ferromagnetic ground state in the intermediate valence regime. We propose that the mechanism, which does not assume an intra atomic Hund's coupling, is present in both the iron group and in some f electron compounds like Ce(Rh_{1-x} Ru_x)_3 B_2, La_x Ce_{1-x} Rh_3 B_2 and the uranium monochalcogenides US, USe, and UTe

    Quorum sensing:Implications on rhamnolipid biosurfactant production

    Get PDF

    Wastewater-Based Epidemiology: Global Collaborative to Maximize Contributions in the Fight against COVID-19

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARSCoV-2), a novel member of the Coronaviridae family, has been identified as the etiologic agent of an ongoing pandemic of severe pneumonia known as COVID-19. To date there have been millions of cases of COVID-19 diagnosed in 184 countries with case fatality rates ranging from 1.8% in Germany to 12.5% in Italy. Limited diagnostic testing capacity and asymptomatic and oligosymptomatic infections result in significant uncertainty in the estimated extent of SARS-CoV-2 infection. Recent reports have documented that infection with SARS-CoV-2 is accompanied by persistent shedding of virus RNA in feces in 27% to 89% of patients at densities from 0.8 to 7.5 log10 gene copies per gram. The presence of SARS-CoV-2 RNA in feces raises the potential to survey sewage for virus RNA to inform epidemiological monitoring of COVID-19, which we refer to as wastewater-based epidemiology (WBE), but is also known as environmental surveillance

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore