298 research outputs found

    "Gene accordions" cause genotypic and phenotypic heterogeneity in clonal populations of Staphylococcus aureus

    Get PDF
    Funding: Research Executive Agency to SH (https://erc.europa.eu/); European Union’s Horizon 2020 research andinnovation program under the Marie Sklodowska-Curie grant agreement No“GA655978”; University of Tübingen (EKUT), Ministry for Science and Art Baden-Württemberg via the RiSC, infrastructural funding from the Deutsche Forschungsgemeinschaft (DFG), Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections (SH); Chief Scientists Office (Reference: SIRN10) (MTGH).Gene tandem amplifications are thought to drive bacterial evolution, but they are transient in the absence of selection, making their investigation challenging. Here, we analyze genomic sequences of Staphylococcus aureus USA300 isolates from the same geographical area to identify variations in gene copy number, which we confirm by long-read sequencing. We find several hotspots of variation, including the csa1 cluster encoding lipoproteins known to be immunogenic. We also show that the csa1 locus expands and contracts during bacterial growth in vitro and during systemic infection of mice, and recombination creates rapid heterogeneity in initially clonal cultures. Furthermore, csa1 copy number variants differ in their immunostimulatory capacity, revealing a mechanism by which gene copy number variation can modulate the host immune response.Publisher PDFPeer reviewe

    PinR mediates the generation of reversible population diversity in Streptococcus zooepidemicus

    Get PDF
    Opportunistic pathogens must adapt to and survive in a wide range of complex ecosystems. Streptococcus zooepidemicus is an opportunistic pathogen of horses and many other animals, including humans. The assembly of different surface architecture phenotypes from one genotype is likely to be crucial to the successful exploitation of such an opportunistic lifestyle. Construction of a series of mutants revealed that a serine recombinase, PinR, inverts 114 bp of the promoter of SZO_08560, which is bordered by GTAGACTTTA and TAAAGTCTAC inverted repeats. Inversion acts as a switch, controlling the transcription of this sortase-processed protein, which may enhance the attachment of S. zooepidemicus to equine trachea. The genome of a recently sequenced strain of S. zooepidemicus, 2329 (Sz2329), was found to contain a disruptive internal inversion of 7 kb of the FimIV pilus locus, which is bordered by TAGAAA and TTTCTA inverted repeats. This strain lacks pinR and this inversion may have become irreversible following the loss of this recombinase. Active inversion of FimIV was detected in three strains of S. zooepidemicus, 1770 (Sz1770), B260863 (SzB260863) and H050840501 (SzH050840501), all of which encoded pinR. A deletion mutant of Sz1770 that lacked pinR was no longer capable of inverting its internal region of FimIV. The data highlight redundancy in the PinR sequence recognition motif around a short TAGA consensus and suggest that PinR can reversibly influence the wider surface architecture of S. zooepidemicus, providing this organism with a bet-hedging solution to survival in fluctuating environments

    The Impact of Recombination on dN/dS within Recently Emerged Bacterial Clones

    Get PDF
    The development of next-generation sequencing platforms is set to reveal an unprecedented level of detail on short-term molecular evolutionary processes in bacteria. Here we re-analyse genome-wide single nucleotide polymorphism (SNP) datasets for recently emerged clones of methicillin resistant Staphylococcus aureus (MRSA) and Clostridium difficile. We note a highly significant enrichment of synonymous SNPs in those genes which have been affected by recombination, i.e. those genes on mobile elements designated “non-core” (in the case of S. aureus), or those core genes which have been affected by homologous replacements (S. aureus and C. difficile). This observation suggests that the previously documented decrease in dN/dS over time in bacteria applies not only to genomes of differing levels of divergence overall, but also to horizontally acquired genes of differing levels of divergence within a single genome. We also consider the role of increased drift acting on recently emerged, highly specialised clones, and the impact of recombination on selection at linked sites. This work has implications for a wide range of genomic analyses

    The Ess/Type VII secretion system of Staphylococcus aureus shows unexpected genetic diversity

    Get PDF
    We thank the core sequencing and informatics teams at the Sanger Institute for their assistance and The Wellcome Trust for its support of the Sanger Institute Pathogen Genomics and Biology groups. SRH, JP and MTGH were supported by Wellcome Trust grant 098051. Bioinformatics and Computational Biology analyses were supported by the University of St Andrews Bioinformatics Unit that is funded by a Wellcome Trust ISSF award (grant 105621/Z/14/Z). SP is funded by the UKCRC Translational Infection Research Initiative, and the NIHR Cambridge Biomedical Research Centre. CPH is supported by the Wellcome Trust (grant number 104241/z/14/z) TP is a Royal Society/Wolfson Merit Award Holder.BACKGROUND: Type VII protein secretion (T7SS) is a specialised system for excreting extracellular proteins across bacterial cell membranes and has been associated with virulence in Staphylococcus aureus. The genetic diversity of the ess locus, which encodes the T7SS, and the functions of proteins encoded within it are poorly understood. RESULTS: We used whole genome sequence data from 153 isolates representative of the diversity of the species to investigate the genetic variability of T7SS across S. aureus. The ess loci were found to comprise of four distinct modules based on gene content and relative conservation. Modules 1 and 4, comprising of the 5' and 3' modules of the ess locus, contained the most conserved clusters of genes across the species. Module 1 contained genes encoding the secreted protein EsxA, and the EsaAB and EssAB components of the T7SS machinery, and Module 4 contained two functionally uncharacterized conserved membrane proteins. Across the species four variants of Module 2 were identified containing the essC gene, each of which was associated with a specific group of downstream genes. The most diverse module of the ess locus was Module 3 comprising a highly variable arrangement of hypothetical proteins. RNA-Seq was performed on representatives of the four Module 2 variants and demonstrated strain-specific differences in the levels of transcription in the conserved Module 1 components and transcriptional linkage Module 2, and provided evidence of the expression of genes the variable regions of the ess loci. CONCLUSIONS: The ess locus of S. aureus exhibits modularity and organisational variation across the species and transcriptional variation. In silico analysis of ess loci encoded hypothetical proteins identified potential novel secreted substrates for the T7SS. The considerable variety in operon arrangement between otherwise closely related isolates provides strong evidence for recombination at this locus. Comparison of these recombination regions with each other, and with the genomes of other Staphylococcal species, failed to identify evidence of intra- and inter-species recombination, however the analysis identified a novel T7SS in another pathogenic staphylococci, Staphylococcus lugdunensis.Publisher PDFPeer reviewe

    Establishment of long-term ostracod epidermal culture

    Get PDF
    Primary crustacean cell culture was introduced in the 1960s, but to date limited cell lines have been established. Skogsbergia lerneri is a myodocopid ostracod, which has a body enclosed within a thin, durable, transparent bivalved carapace, through which the eye can see. The epidermal layer lines the inner surface of the carapace and is responsible for carapace synthesis. The purpose of the present study was to develop an in vitro epidermal tissue and cell culture method for S. lerneri. First, an optimal environment for the viability of this epidermal tissue was ascertained, while maintaining its cell proliferative capacity. Next, a microdissection technique to remove the epidermal layer for explant culture was established and finally, a cell dissociation method for epidermal cell culture was determined. Maintenance of sterility, cell viability and proliferation were key throughout these processes. This novel approach for viable S. lerneri epidermal tissue and cell culture augments our understanding of crustacean cell biology and the complex biosynthesis of the ostracod carapace. In addition, these techniques have great potential in the fields of biomaterial manufacture, the military and fisheries, for example, in vitro toxicity testing

    Localization Bounds for an Electron Gas

    Full text link
    Mathematical analysis of the Anderson localization has been facilitated by the use of suitable fractional moments of the Green function. Related methods permit now a readily accessible derivation of a number of physical manifestations of localization, in regimes of strong disorder, extreme energies, or weak disorder away from the unperturbed spectrum. The present work establishes on this basis exponential decay for the modulus of the two--point function, at all temperatures as well as in the ground state, for a Fermi gas within the one-particle approximation. Different implications, in particular for the Integral Quantum Hall Effect, are reviewed.Comment: An extended version of the previous draft. LaTeX, 1 figure (eps

    Lower levels of Th1 and Th2 cytokines in cerebrospinal fluid (CSF) at the time of initial CSF shunt placement in children are associated with subsequent shunt revision surgeries

    Get PDF
    OBJECTIVE: We compare cytokine profiles at the time of initial CSF shunt placement between children who required no subsequent shunt revision surgeries and children requiring repeated CSF shunt revision surgeries for CSF shunt failure. We also describe the cytokine profiles across surgical episodes for children who undergo multiple subsequent revision surgeries. METHODS: This pilot study was nested within an ongoing prospective multicenter study collecting CSF samples and clinical data at the time of CSF shunt surgeries since August 2014. We selected cases where CSF was available for children who underwent an initial CSF shunt placement and had no subsequent shunt revision surgeries during \u3e=24 months of follow-up (n = 7); as well as children who underwent an initial CSF shunt placement and then required repeated CSF shunt revision surgeries (n = 3). Levels of 92 human cytokines were measured using the Olink immunoassay and 41 human cytokines were measured using Luminex based bead array on CSF obtained at the time of each child\u27s initial CSF shunt placement and were displayed in heat maps. RESULTS: Qualitatively similar profiles for the majority of cytokines were observed among the patients in each group in both Olink and Luminex assays. Lower levels of MCP-3, CASP-8, CD5, CXCL9, CXCL11, eotaxin, IFN-γ, IL-13, IP-10, and OSM at the time of initial surgery were noted in the children who went on to require multiple surgeries. Pro- and anti-inflammatory cytokines were selected a priori and shown across subsequent revision surgeries for the 3 patients. Cytokine patterns differed between patients, but within a given patient pro-inflammatory and anti-inflammatory cytokines acted in a parallel fashion, with the exception of IL-4. CONCLUSIONS: Heat maps of cytokine levels at the time of initial CSF shunt placement for each child undergoing only a single initial CSF shunt placement and for each child undergoing repeat CSF shunt revision surgeries demonstrated qualitatively similar profiles for the majority of cytokines. Lower levels of MCP-3, CASP-8, CD5, CXCL9, CXCL11, eotaxin, IFN-γ, IL-13, IP-10, and OSM at the time of initial surgery were noted in the children who went on to require multiple surgeries. Better stratification by patient age, etiology, and mechanism of failure is needed to develop a deeper understanding of the mechanism of inflammation in the development of hydrocephalus and response to shunting in children

    Evolutionary dynamics of methicillin-resistant Staphylococcus aureus within a healthcare system

    Get PDF
    Background: In the past decade, several countries have seen gradual replacement of endemic multi-resistant healthcare-associated methicillin-resistant Staphylococcus aureus (MRSA) with clones that are more susceptible to antibiotic treatment. One example is Singapore, where MRSA ST239, the dominant clone since molecular profiling of MRSA began in the mid-1980s, has been replaced by ST22 isolates belonging to EMRSA-15, a recently emerged pandemic lineage originating from Europe.Results: We investigated the population structure of MRSA in Singaporean hospitals spanning three decades, using whole genome sequencing. Applying Bayesian phylogenetic methods we report that prior to the introduction of ST22, the ST239 MRSA population in Singapore originated from multiple introductions from the surrounding region; it was frequently transferred within the healthcare system resulting in a heterogeneous hospital population. Following the introduction of ST22 around the beginning of the millennium, this clone spread rapidly through Singaporean hospitals, supplanting the endemic ST239 population. Coalescent analysis revealed that although the genetic diversity of ST239 initially decreased as ST22 became more dominant, from 2007 onwards the genetic diversity of ST239 began to increase once more, which was not associated with the emergence of a sub-clone of ST239. Comparative genomic analysis of the accessory genome of the extant ST239 population identified that the Arginine Catabolic Mobile Element arose multiple times, thereby introducing genes associated with enhanced skin colonization into this population.Conclusions: Our results clearly demonstrate that, alongside clinical practice and antibiotic usage, competition between clones also has an important role in driving the evolution of nosocomial pathogen populations.</p

    Genomic Dissection of an Icelandic Epidemic of Respiratory Disease in Horses and Associated Zoonotic Cases.

    Get PDF
    Iceland is free of the major infectious diseases of horses. However, in 2010 an epidemic of respiratory disease of unknown cause spread through the country's native horse population of 77,000. Microbiological investigations ruled out known viral agents but identified the opportunistic pathogen Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) in diseased animals. We sequenced the genomes of 257 isolates of S. zooepidemicus to differentiate epidemic from endemic strains. We found that although multiple endemic clones of S. zooepidemicus were present, one particular clone, sequence type 209 (ST209), was likely to have been responsible for the epidemic. Concurrent with the epidemic, ST209 was also recovered from a human case of septicemia, highlighting the pathogenic potential of this strain. Epidemiological investigation revealed that the incursion of this strain into one training yard during February 2010 provided a nidus for the infection of multiple horses that then transmitted the strain to farms throughout Iceland. This study represents the first time that whole-genome sequencing has been used to investigate an epidemic on a national scale to identify the likely causative agent and the link to an associated zoonotic infection. Our data highlight the importance of national biosecurity to protect vulnerable populations of animals and also demonstrate the potential impact of S. zooepidemicus transmission to other animals, including humans.IMPORTANCE An epidemic of respiratory disease affected almost the entire native Icelandic horse population of 77,000 animals in 2010, resulting in a self-imposed ban on the export of horses and significant economic costs to associated industries. Although the speed of transmission suggested that a viral pathogen was responsible, only the presence of the opportunistic pathogen Streptococcus zooepidemicus was consistent with the observed clinical signs. We applied genomic sequencing to differentiate epidemic from endemic strains and to shed light on the rapid transmission of the epidemic strain throughout Iceland. We further highlight the ability of epidemic and endemic strains of S. zooepidemicus to infect other animals, including humans. This study represents the first time that whole-genome sequencing has been used to elucidate an outbreak on a national scale and identify the likely causative agent
    corecore