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Lower levels of Th1 and Th2 cytokines in cerebrospinal fluid (CSF) at the 
time of initial CSF shunt placement in children are associated with 
subsequent shunt revision surgeries 
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A R T I C L E  I N F O   

Keywords: 
Cytokine 
Shunt placement 
Hydrocephalus 
Cerebrospinal fluid 

A B S T R A C T   

Objective: We compare cytokine profiles at the time of initial CSF shunt placement between children who 
required no subsequent shunt revision surgeries and children requiring repeated CSF shunt revision surgeries for 
CSF shunt failure. We also describe the cytokine profiles across surgical episodes for children who undergo 
multiple subsequent revision surgeries. 
Methods: This pilot study was nested within an ongoing prospective multicenter study collecting CSF samples and 
clinical data at the time of CSF shunt surgeries since August 2014. We selected cases where CSF was available for 
children who underwent an initial CSF shunt placement and had no subsequent shunt revision surgeries during 
>=24 months of follow-up (n = 7); as well as children who underwent an initial CSF shunt placement and then 
required repeated CSF shunt revision surgeries (n = 3). Levels of 92 human cytokines were measured using the 
Olink immunoassay and 41 human cytokines were measured using Luminex based bead array on CSF obtained at 
the time of each child’s initial CSF shunt placement and were displayed in heat maps. 
Results: Qualitatively similar profiles for the majority of cytokines were observed among the patients in each 
group in both Olink and Luminex assays. Lower levels of MCP-3, CASP-8, CD5, CXCL9, CXCL11, eotaxin, IFN-γ, 
IL-13, IP-10, and OSM at the time of initial surgery were noted in the children who went on to require multiple 
surgeries. Pro- and anti-inflammatory cytokines were selected a priori and shown across subsequent revision 
surgeries for the 3 patients. Cytokine patterns differed between patients, but within a given patient pro- 
inflammatory and anti-inflammatory cytokines acted in a parallel fashion, with the exception of IL-4. 
Conclusions: Heat maps of cytokine levels at the time of initial CSF shunt placement for each child undergoing 
only a single initial CSF shunt placement and for each child undergoing repeat CSF shunt revision surgeries 
demonstrated qualitatively similar profiles for the majority of cytokines. Lower levels of MCP-3, CASP-8, CD5, 
CXCL9, CXCL11, eotaxin, IFN-γ, IL-13, IP-10, and OSM at the time of initial surgery were noted in the children 
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who went on to require multiple surgeries. Better stratification by patient age, etiology, and mechanism of failure 
is needed to develop a deeper understanding of the mechanism of inflammation in the development of hydro-
cephalus and response to shunting in children.   

1. Introduction 

Hydrocephalus is characterized by the abnormal secretion, circula-
tion, and/or absorption of cerebrospinal fluid (CSF) within the ventricles 
of the brain resulting in ventricular expansion and intracranial pressure 
[1]. Cerebrospinal fluid shunt placement is the standard of care for pe-
diatric hydrocephalus [2]. While CSF shunts avoid further brain injury 
and allow children to survive, 30–40% of all pediatric shunts placed fail 
within the first year resulting in shunt revision and can cause the onset 
of new and often chronic surgical and medical problems [3–4]. 

Shunt system failures are generally classified as resulting from one of 
four causes: (1) the intricate and variable causes of the disorder [5–6] 
(2) shunt infection, (3) mechanical malfunction, or (4) shunt obstruc-
tion. Obstruction of the shunt catheters is multiplex and can be caused 
by cells originating from normal brain tissue (choroid plexus, epen-
dyma, leptomeninges, and connective tissue) or by pathological cells 
and tissues (blood-borne or central nervous system [CNS] inflammatory 
cells, red blood cells, platelets, and cell debris) [7]. Interestingly, prior 
studies reveal that pathological inflammatory reactions occur in and 
around many obstructed CSF shunt systems, highlighting that inflam-
matory response biomarkers may be an important target for inhibiting 
CSF shunt failure [8–9]. Given our current understanding of the cellular 
environment of shunt obstruction, the role of inflammatory molecules (i. 
e., cytokines and chemokines) may be particularly relevant in shunted 
hydrocephalus. 

Literature about the role of inflammation in the context of pediatric 
shunted hydrocephalus is limited. Sävman et al. investigated the levels 
of cytokines in preterm infants with post-hemorrhagic hydrocephalus 
(PHH) and revealed elevated levels of tumor necrosis factor alpha (TNF- 
α), interleukin-1β (IL-1β), interleukin-8 (IL-8), and interferon- γ (IFN-γ) 
in CSF from infants with PHH [10]. Levels of IL-6, IL-4, TNF- α, tumor 
necrosis factor- α (TNF α), transforming growth factor-β1 (TGF β1), and 
other inflammatory markers in CSF and blood have been found to 
correlate with the likelihood of subsequent hydrocephalus development 
in infants and adults who have had an infection or brain hemorrhage 
[11–16]. Multiple studies have confirmed a degree of inflammatory 
response being involved in the pathophysiology mechanism of shunt 
failures [17–21] after surgical treatment for hydrocephalus is initiated. 
However, this evidence is limited and an improved understanding of the 
molecular physiology and the immune activation responses associated 
with CSF shunt failure may enhance our ability to prolong CSF shunt 
survival among children with hydrocephalus. 

Using data from an ongoing prospective, multicenter study collecting 
CSF samples and clinical data at the time of CSF shunt surgeries since 
August 2014, we recognized a unique opportunity to investigate the 
utility of cytokines as diagnostic markers for pediatric CSF shunt failure 
(not due to CSF shunt infection). We identified two objectives for this 
pilot study. First, we sought to compare the cytokine profiles at the time 
of initial CSF shunt placement between children who required no sub-
sequent shunt revision surgeries and children who ultimately required 
repeated CSF shunt revision surgeries for CSF shunt failure. Second, we 
sought to describe the cytokine profiles across surgical episodes for 
children who ultimately undergo multiple subsequent revision surgeries 
for CSF shunt failure. We hypothesized that, unlike with CSF from 
children requiring no revision surgeries, Olink based assays would 
identify relatively higher abundances of pro-inflammatory cytokines in 
the CSF from children requiring subsequent revision surgeries for CSF 
shunt failure. 

2. Methods 

2.1. Study subjects 

Enrollment in the CLIMB study occurred from August 2014 to pre-
sent; CLIMB enrolled children with hydrocephalus across 4 centers and 
collected clinical data, CSF, and hardware [22–26] to investigate bio-
markers of CSF shunt infection. Children with hydrocephalus who were 
≤ 18 years old and undergoing initial CSF shunt placement surgery at 
Seattle Children’s Hospital (SCH) were eligible for enrollment in this 
study. For this study, we selected cases where CSF was available for 
children who underwent an initial CSF shunt placement and had no 
subsequent shunt revision surgeries during >=24 months of follow-up 
(n = 7); as well as children who underwent an initial CSF shunt place-
ment and then required repeated CSF shunt revision surgeries (n = 4). 
CSF shunt system(s) included ventriculoperitoneal, ventriculoatrial, 
ventriculopleural, arachnoid cyst shunts, subdural shunts, and lumbo-
peritoneal shunts; temporary devices only such as external ventricular 
drain(s), Ommaya reservoir(s), ventricular access devices (reservoirs) 
and subgaleal shunts were excluded. The study was limited to those for 
which CSF samples were available from both initial CSF shunt placement 
and the majority of subsequent CSF shunt revisions. 

The cytokine profiles of select cases were examined in two distinct 
lines of inquiry: 1) children who undergo placement of an initial CSF 
shunt and require no revision surgeries over the subsequent two years 
compared to those who undergo placement of an initial CSF shunt and 
require multiple revisions and 2) children who undergo placement of an 
initial CSF shunt and require multiple subsequent revision surgeries 
compared within child and across surgical episodes. 

2.2. Ethics statement 

The study received Institutional Review Board approval from the 
Seattle Children’s Research Institute (13346, approved February 9, 
2011) and the Children’s Hospital Los Angeles (CHLA-20–00069, 
approved March 13, 2020). For all study subjects, written consent was 
obtained from parents or guardians, and assent when age- and 
developmentally-appropriate from study subjects, for leftover CSF to be 
collected on each occasion that regular CSF samples were obtained 
during treatment for hydrocephalus. 

2.3. Clinical data 

Clinical data were extracted from the electronic medical record for 
each patient enrolled into the study at the participating center by trained 
research staff. Data included eligibility, demographics, hydrocephalus 
etiology, prior central nervous system surgeries, surgical treatment de-
tails, shunt information, antibiotic treatment, post-operational compli-
cations, CSF microbiological and laboratory results. 

Data regarding subsequent revision and infection interventions were 
also abstracted from the electronic medical record of eligible patients. A 
subsequent intervention was defined by any medical complication or 
surgical procedure that a patient had to undergo secondary to shunt 
malfunction or failure but not infection. Data included indication of 
subsequent intervention, type of surgical intervention, surgical treat-
ment details, antibiotic treatment, post-operational complications, CSF 
microbiological and laboratory results. 

T.D. Simon et al.                                                                                                                                                                                                                                



Cytokine 169 (2023) 156310

3

2.4. CSF specimen collection 

CSF was collected from patients during surgical intervention. Sterile 
conditions were standard practice throughout recovery and storage of 
CSF. After collection, CSF samples were stored at 4 ◦C for up to 5 days. 
CSF was then aliquoted into vials of ~ 100 µl for the study and stored at 
− 70 ◦C. After identification for this study, samples were shipped over-
night to Palo Alto, California on dry ice for analysis. 

2.5. Laboratory analyses 

The levels of 92 human cytokine molecules were measured using the 
Olink immunoassay and 41 human cytokine molecules were measured 
using Luminex based bead array on CSF obtained at the time of each 
child’s initial CSF shunt placement. For clarity, we focus here on the 
Olink immunoassay; [27–30] however, Luminex assay methods and 
results are provided in supplemental materials. 

The Olink immunoassay was performed by the Human Immune 
Monitoring Center at Stanford University. The samples were subjected to 
Olink multiplex assay with Inflammatory panel (Olink Bioscience, 
Uppsala, Sweden), according to the manufacturer’s instructions. Briefly, 
an incubation master mix containing pairs of oligonucleotide-labeled 
antibodies to each protein was added to the samples and incubated for 
16 h at 4 ◦C. Each protein was targeted with two different epitope- 
specific antibodies increasing the specificity of the assay. Presence of 
the target protein in the sample brought the partner probes in close 
proximity, allowing the formation of a double strand oligonucleotide 
polymerase chain reaction (PCR) target. On the following day, the 
extension master mix in the sample initiated the specific target se-
quences to be detected and generated amplicons using PCR in 96 well 
plates. For the detection of the specific protein, Dynamic array inte-
grated fluidic Circuit (IFC) 96x96 chip was primed, loaded with 92 
protein specific primers and mixed with sample amplicons including 
three inter-plate controls and three negative controls. Real time micro-
fluidic qPCR was performed in Biomark (Fluidigm, San Francisco, CA) 
for the target protein quantification. Data were analyzed using Real time 
PCR analysis software via ΔΔCt method and Normalized Protein 
Expression (NPX) manager. One NPX difference equals to the doubling 
of the protein concentration. 

The Luminex -EMD Millipore Magnetic kit assay was also performed 
by the Human Immune Monitoring Center at Stanford University. Kit 
Cat# HCYTMAG-60 K-PX41 was purchased from EMD Millipore Cor-
poration, Burlington, MA., and used according to the manufacturer’s 
recommendations with modifications described as follows. Briefly, 
samples were mixed with antibody-linked magnetic beads on a 96-well 
plate and incubated overnight at 4 ◦C with shaking. Cold and room 
temperature incubation steps were performed on an orbital shaker at 
500–600 rpm. Plates were washed twice with wash buffer in a Bio-Tek 
ELx405 washer. Following one hour incubation at room temperature 
with biotinylated detection antibody, streptavidin-PE was added for 30 
min with shaking. Plates were washed as described and PBS added to 
wells for reading in the Luminex FlexMap3D Instrument with a lower 
bound of 50 beads per sample per cytokine. Samples were measured in 
singlet. Custom Assay Chex control beads were purchased from Radix 
BioSolutions, Georgetown, Texas, and added to all wells. 

2.6. Data analysis 

Patient sociodemographic and clinical characteristics were summa-
rized overall and separately for children who undergo placement of an 
initial CSF shunt and required no revision surgeries over the subsequent 
two years compared to those who undergo placement of an initial CSF 
shunt and required multiple revision surgeries. 

Cytokine profiles at the time of initial shunt placement were exam-
ined qualitatively in a heatmap comparing children who required no 
revision surgeries over the subsequent two years (single) to those who 

required multiple revision surgeries (repeat). Cytokine profiles were 
further examined across multiple subsequent revision surgeries for those 
children who underwent placement of an initial CSF shunt and required 
multiple subsequent revision surgeries. One patient from the original 
group was removed as the available CSF samples from subsequent sur-
geries were not from distinct surgical events (i.e. were from staged re-
visions). A subset of pro- and anti-inflammatory cytokines were selected 
a priori for examination in spaghetti plots depicting temporal patterns 
across shunt surgeries. An approximate permutation test [31] was 
applied to inform the selection of cytokines with different median labels 
between the two groups. A test statistic, S(X,G), for the permutation test 
was defined as the median difference divided by a common standard 
deviation where X represents a cytokine of interest and G takes the value 
one if children did not require revision surgeries and zero otherwise. The 
observed statistic, S0, was first computed using non-permuted data. One 
thousand simulated samples were selected for each of the cytokines, and 
a cytokine-specific p-value was calculated as the proportion of values of 
the test statistic S(X,G) exceeding the observed statistic S0. Although p- 
values were not used for testing, the cytokines with the largest median 
difference (p ≤ 0.10) were further examined in dot scatterplots. Dot 
scatterplots are useful for visualizing differences in the distribution of 
individual patient cytokine measures between groups (e.g., single versus 
repeat). 

3. Results 

A total of 11 individual patients who underwent initial CSF shunt 
surgeries were included in this study. The baseline characteristics of the 
11 patients are shown in Table 1. Ages ranged from 4 days to 11 years 
with a median age of 8 months. The common causes of hydrocephalus in 
this cohort were post-intraventricular hemorrhage secondary to pre-
maturity (3/11 [27%]) and myelomeningocele (3/11 [27%]). The de-
tails of surgical approach to initial shunt placement among the 11 
patients are shown in Table 2. No statistically significant differences (p 
< 0.05) were observed between patients who did and did not require 
multiple revision surgeries in either baseline characteristics or details of 
surgical approaches. 

Heatmaps of cytokine levels at the time of initial CSF shunt place-
ment for each child undergoing only a single initial CSF shunt placement 
and for each child undergoing repeat CSF shunt revision surgeries are 
provided in Fig. 1 for Olink assays and Supplemental Figure 1 for 
Luminex assays. Qualitatively similar profiles for the majority of cyto-
kines were observed among the patients in each group in both Olink and 
Luminex assays. 

Of note, within each group at least one child was noted to demon-
strate an outlier cytokine profile. The cytokine profile of SEA0158 ap-
pears qualitatively different from other 6 patients who underwent only a 
single initial CSF shunt placement. (Fig. 1 and Supplemental Figure 1) 
This child underwent initial CSF shunt close to birth (as did all others 
except SEA0181 who was treated at 7 months of age) and s/he experi-
enced IVH (as did SEA0248). The cytokine profile of SEA0159 appears 
qualitatively different at initial CSF shunt placement from other 3 pa-
tients who underwent multiple CSF shunt revisions. (Fig. 1 and Sup-
plemental Fig. 1) This child underwent initial CSF shunt close to birth 
(as did all others except SEA0142 who was treated at 11 months of age) 
and s/he experienced aqueductal stenosis. Neither age at time of CSF 
shunt placement nor etiology appears to correlate with outlier cytokine 
profiles in this limited dataset. 

Ten cytokines were observed in the Olink assays to differ at the time 
of initial shunt placement for children who undergo single versus 
repeated surgeries (p < 0.10). (Fig. 2) Lower levels of MCP-3, CASP-8, 
CD5, CXCL9, CXCL11, eotaxin, IFN-γ, IL-13, IP-10, and OSM at the time 
of initial surgery were noted in the children who went on to require 
multiple surgeries. In Luminex assays, lower levels of IP-10, IL-9, IL-5, 
and EGF at the time of initial surgery were noted in the children who 
went on to require multiple surgeries. (Supplemental Figure 1) 
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Differences were not observed in MCP-3, eotaxin, IFN-γ, and IL-13 in the 
Luminex assay. 

From this cohort of 11 patients, 4 (33%) underwent subsequent 
revision surgeries over the 2 years following initial CSF shunt place-
ment. The number of revision surgeries ranged from 3 surgeries to 6 
surgeries with a median of 4 revision surgeries. Shunt obstruction was 
the most common cause of required CSF shunt revision (55%). Median 
time between surgeries was 59 days with an interquartile range of 
52–70 days (min 6, max 92 days). Two of the patients have experienced 
no additional revisions surgeries up to the time of publication; SEA0248 
underwent their next revision surgery 22 months later. 

A total of 7 CSF samples from subsequent revision surgeries for 3 
patients were collected and analyzed using Olink (Fig. 3) and Luminex 
(Supplemental Figure 2) assays. Qualitatively similar profiles for the 
majority of cytokines were observed between surgeries for all 3 patients 
in both Olink and Luminex assays. Of note, the Luminex assay demon-
strated similar findings for IP-10 and IL-6. 

Pro- and anti-inflammatory cytokines were selected a priori and 
shown across subsequent revision surgeries for the 3 patients. (Fig. 4) 
Cytokine patterns differed between patients, but within a given patient 
pro-inflammatory and anti-inflammatory cytokines appeared to be 
coordinately expressed, with the exception of IL-4, the levels of which 
varied independently. 

4. Discussion 

Heat maps of cytokine levels at the time of initial CSF shunt place-
ment for each child undergoing only a single initial CSF shunt placement 
and for each child undergoing repeat CSF shunt revision surgeries 
demonstrate qualitatively similar profiles for the majority of cytokines. 
Lower levels of MCP-3, CASP-8, CD5, CXCL9, CXCL11, eotaxin, IFN-γ, 
IL-13, IP-10, and OSM at the time of initial surgery were noted in the 
children who went on to require multiple surgeries. While we focus our 
results on the Olink assay, the Luminex assay demonstrated similar 
findings for IP-10 and low detection for other cytokines in common 
between the two platforms. Cytokine patterns differed between patients, 
but within a given patient pro-inflammatory and anti-inflammatory 
cytokines act in a parallel fashion, with the exception of IL-4. While 
we focus our results on the Olink assay, the Luminex assay demonstrated 
similar findings for IP-10 and IL-6. 

Type 1 T helper (Th1) cells stimulate cellular immune response, 
participate in the inhibition of macrophage activation, and stimulate B 
cells to produce antibodies. Migration of cells to the CNS is regulated by 
IFN-γ induced chemokines such as the IFN-γ induced protein (IP-10)/ 
CXCL10 and the monokines induced by IFN-γ (MIG/CXCL9 and 
CXCL11), which are all 3 ligands of the CXC chemokine receptor 3 
(CXCR3).36 In physiological conditions, these chemokines are unde-
tectable in most non-lymphoid tissues but they are strongly induced 
upon IFN-γ signaling, infection, or tissue injury. [32] The finding that 
lower levels of these chemokines are associated with subsequent shunt 
failure suggests upregulation of the Th1 pathway via all 3 ligands of 

Table 1 
Baseline Characteristics*.   

Entire 
Cohort (n 
= 11) 

Patients Not 
Requiring 
Multiple 
Revision 
Surgeries 
(n = 7) 

Patients 
Requiring 
Multiple 
Revision 
Surgeries 
(n = 4) 

Median Age in years 
(interquartile range) 

0.7 (0.1, 
2.2) 

0.7 (0.2, 2.2) 0.4 (0.1, 6.1) 

Mean Gestational Age in 
weeks (standard 
deviation, (SD))  

35.4 (4.6) 34.8 (5.3) 36.3 (3.8) 

Mean Birth weight in kg 
(SD) 

3.3 (1.5) 2.7 (1.3) 4.2 (1.5) 

Sex, n (%) 
Male  5 (45)  4 (57)  1 (25) 

Female 6 (55) 3 (43) 3 (75) 
Race, n (%) 

White  4 (36)  2 (29)  2 (50) 
More than one race 3 (27) 2 (29) 1 (25) 
Unknown or not reported  4 (36) 3 (42) 1 (25) 

Ethnicity, n (%) 
Not Hispanic or Latino  7 (64)  4 (57)  3 (75) 

Hispanic or Latino 
Unknown or not 
required 

2 (18) 
2 (18) 

2 (29) 
1 (14) 

0 
1 (25) 

Hydrocephalus etiology, 
n (%) 
CNS tumor  

1 (10)  2 (29)  1 (25) 

Myelomeningocele 3 (27) 2 (29) 1 (25) 
Communicating 

congenital 
hydrocephalus 

2 (18)  2 (29)  0  

Post-intraventricular 
hemorrhage secondary 
to prematurity 

3 (27)  1 (13)  1 (25)  

Aqueductal stenosis 2 (18) 0 1 (25) 
Complex chronic 

condition in addition 
to hydrocephalus, n 
(%) 

4 (36)  2 (29)  2 (50) 

*No statistically significant differences (p < 0.05) were observed between pa-
tients who did and did not require multiple revision surgeries. 

Table 2 
Surgical Details*.   

Entire 
Cohort (n 
= 11) 

Patients Not 
Requiring 
Multiple 
Revision 
Surgeries 
(n = 7) 

Patients 
Requiring 
Multiple 
Revision 
Surgeries 
(n = 4) 

Mean surgery duration 
in minutes (standard 
deviation) 

44.2 (8.4) 43.7 (9.7) 45.0 (6.9) 

Ancef use as 
prophylactic 
perioperative 
antibiotics, n (%) 

10 (91)  6 (86) 4 (100) 

Valve type, n (%) 
Strata  9 (82)  5 (72)  4 (100) 

Delta 1 (9) 1 (14) 0 
Other 1 (9) 1 (14) 0 
Simple shunt, n (%) 11 (100) 7 (100) 4 (100) 
Proximal catheter 

placement in 
ventricle, n (%) 

11 (100) 7 (100) 4 (100) 

Distal catheter 
placement in 
peritoneum, n (%) 

11 (100) 7 (100) 4 (100) 

Ventricular catheter 
placement assistance, 
n (%) 
Endoscopy  

0 (0)  0 (0)  0 (0) 

Ultrasound 0 (0) 0 (0) 0 (0) 
Stereotactic navigation 11 (100) 7 (100) 4 (100) 
Post-operative 

complication, n (%) 
Sepsis  

0 (0)  0 (0)  0 (0) 

CSF leak 1 (9) 0 (0) 1 (25) 
Pseudomeningocele 

Wound infection 
0 (0) 
0 (0) 

0 (0) 
0 (0) 

0 (0) 
0 (0) 

Meningitis 0 (0) 0 (0) 0 (0) 
Bowel perforation 0 (0) 0 (0) 0 (0) 
Other 1 (9) 0 (0) 1 (25) 

*No statistically significant differences (p < 0.05) were observed between pa-
tients who did and did not require multiple revision surgeries. 
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CXCR3 (IP-10, CXCL9, CXCL11) at the time of shunt placement may be 
associated with protection from shunt failure. 

Type 1 T helper (Th2) cells stimulate the humoral immune response, 
promote B cell proliferation and induce antibody production. Some of 
the cytokines involved in the Th2 pathway include IL-13 and eotaxin. 
The finding that lower levels of these chemokines are associated with 
subsequent shunt failure suggests upregulation of the Th2 pathway may 
be associated with protection from shunt failure. Further study in larger 
cohorts of patients, ideally stratified by age, etiology, and/or mechanism 
of failure, is needed to better understand the roles of the Th1 and Th2 
pathways in shunt failure. 

Cytokine findings in hydrocephalus are variable, but most of the 
cytokines observed to be lower in children undergoing repeated future 
surgeries have been reported on in association with hydrocephalus. A 
systematic review of studies to date suggested that IL-6, IL-1β, LRG, IL- 
18, VEGF, and IFN-γ are elevated in CSF from patients with hydro-
cephalus and may be involved in promotion of hydrocephalus devel-
opment and progression. [33] IFN-γ showed most promise in 
development of hydrocephalus due to diagnoses other than post- 
hemorrhagic hydrocephalus, whereas CSF of post-hemorrhagic hydro-
cephalus patients had increased levels of IL-6, IL-18, and VEGF. [33] 
Higher levels of IL-1β and other pro-inflammatory cytokines have been 
implicated in CSF cell levels observed in, [16] as well as development of, 
post-hemorrhagic hydrocephalus. [34] Cytokines in the Th1 pathway 
have been associated with increased CSF cell levels observed in post- 
hemorrhagic hydrocephalus. [16] A dysregulated host immune 
response with signaling via the IL-4, IL-13, and interferon pathways 
have been observed in inflammatory hydrocephalus. [35] Elevated 
levels of OSM were observed in idiopathic normal pressure hydro-
cephalus patients. [33] Several other cytokines such as MCP-3, CASP-8, 
and CD5 have not been reported to have an association with hydro-
cephalus previously. 

However, this study differs from many of these studies as it includes 
only children with hydrocephalus and is more focused on shunt out-
comes. Here the literature is more sparse. Eotaxin has been associated 
with CSF eosinophilia during CSF shunt infection [36]. Mixed findings 
were observed in pediatric patients with shunted hydrocephalus [37]. 
Our own findings in a very limited number of patients suggest patterns 
differed between patients, but within a given patient pro-inflammatory 
and anti-inflammatory cytokines act in a parallel fashion, with the 
exception of IL-4. For children with shunted hydrocephalus, better 
stratification by patient age, etiology, and mechanism of failure is 
needed to develop a deeper understanding of the mechanism of 
inflammation in shunted hydrocephalus [33]. There may also be benefit 
in comparing serum and CSF cytokine levels in future studies. 

This study was subject to several limitations. Given the modest 
number of children and many cytokines tested, there is a risk of false 
discoveries with multiple comparisons within this pilot study. CSF 
sampling and preanalytical handling (centrifugation, time from sam-
pling to storage, storage material, and storage temperature) all can in-
fluence CSF analyses. [33] These samples were all collected from the 
operating field and were kept at 4◦for variable durations of time prior to 
storage at − 80. Standardization of as many of the preanalytical handling 
of CSF prior to analyses will optimize our ability to draw meaningful 
conclusions about cytokines. In addition, we did not obtain information 
about use of anti-inflammatory medications in this patient population 
which may impact findings. Despite these limitations, we were able to 
explore a more diverse battery of cytokines in hydrocephalus, as well as 
change within patient over longer time, compared to earlier cohorts. 
[16,37]. 

5. Conclusion 

Given this and earlier study’s mixed findings of the cytokine activity 
in children with hydrocephalus, [16,37] better stratification by patient 
age, etiology, and mechanism of failure is needed to develop a deeper 

Fig. 1. Olink heatmap results showing the cytokine profiles at the time of 
initial surgery for children who undergo placement of an initial CSF shunt and 
require no revisions, vs. those requiring repeat revisions. Patients are listed 
along the x-axis, cytokines are listed on the y-axis, and p values generated from 
permutation tests are displayed next to the cytokines on the right side. Relative 
intensity of cytokine expression (NPX) is denoted by color gradient shown in 
legend to the right of the figure. 
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understanding of the mechanism of inflammation in the development of 
hydrocephalus, [33] the response to shunting of hydrocephalus, as well 
as the contribution of inflammation to the pathophysiology of CSF shunt 
infection. 
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Fig. 2. Dot scatterplots showing the relative intensity of cytokine expression (NPX) (y-axis) for cytokines with differences (p < 0.10) noted between the time of initial 
surgery for patients who undergo single versus repeated surgeries (x-axis). Horizontal bars represent medians. 
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Fig. 3. Olink heatmap results showing the cytokine profiles of patients who 
undergo placement of an initial CSF shunt and require repeat revision surgeries. 
Procedures within each patient are listed along the x-axis, and cytokines are 
listed on the y-axis. Relative intensity of cytokine expression (NPX) is denoted 
by color gradient shown in legend to the right of the figure. 

Fig. 4. Spaghetti plot of pro-inflammatory cytokines such as interleukin (IL) − 6 
and TNF-α; and anti-inflammatory cytokines such as IL-1 receptor antagonist, 
IL-4, IL-10, and IL-13 for patients who undergo placement of an initial CSF 
shunt and require repeat revisions surgeries. 
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