282 research outputs found

    A constant limiting mass scale for flat early-type galaxies from z=1 to z=0: density evolves but shapes do not

    Get PDF
    We measure the evolution in the intrinsic shape distribution of early-type galaxies from z~1 to z~0 by analyzing their projected axis-ratio distributions. We extract a low-redshift sample (0.04 < z < 0.08) of early-type galaxies with very low star-formation rates from the SDSS, based on a color-color selection scheme and verified through the absence of emission lines in the spectra. The inferred intrinsic shape distribution of these early-type galaxies is strongly mass dependent: the typical short-to-long intrinsic axis-ratio of high-mass early-type galaxies (>1e11 M_sun) is 2:3, where as at masses below 1e11 M_sun this ratio narrows to 1:3, or more flattened galaxies. In an entirely analogous manner we select a high-redshift sample (0.6 < z < 0.8) from two deep-field surveys: GEMS and COSMOS. We find a seemingly universal mass of ~1e11 M_sun for highly flatted early-type systems at all redshifts. This implies that the process that grows an early-type galaxy above this ceiling mass involves forming round systems. Using both parametric and non-parametric tests, we find no evolution in the projected axis-ratio distribution for galaxies with masses >3e10 M_sun with redshift. At the same time, our samples imply an increase of 2-3x in co-moving number density for early-type galaxies at masses >3e10 M_sun, in agreement with previous studies. Given the direct connection between the axis-ratio distribution and the underlying bulge-to-disk ratio distribution, our findings imply that the number density evolution of early-type galaxies is not exclusively driven by the emergence of either bulge- or disk-dominated galaxies, but rather by a balanced mix that depends only on the stellar mass of the galaxy. The challenge for galaxy formation models is to reproduce this overall non-evolving ratio of flattened to round early-type galaxies in the context of a continually growing population.Comment: 14 pages in emulate ApJ format, 8 color figures, submitted to ApJ, comments welcome, fixed missing reference

    Stellar and Gaseous Nuclear Disks Observed in Nearby (U)LIRGs

    Get PDF
    We present near-infrared integral field spectroscopy of the central kiloparsec of 17 nearby luminous and ultra-luminous infrared galaxies undergoing major mergers. These observations were taken with OSIRIS assisted by the Keck I and II Adaptive Optics systems, providing spatial resolutions of a few tens of parsecs. The resulting kinematic maps reveal gas disks in at least 16 out of 19 nuclei and stellar disks in 11 out of 11 nuclei observed in these galaxy merger systems. In our late-stages mergers, these disks are young (stellar ages <30<30 Myr) and likely formed as gas disks which became unstable to star formation during the merger. On average, these disks have effective radii of a few hundred parsecs, masses between 10810^{8} and 1010MSun10^{10} M_{Sun}, and v/σv/\sigma between 1 and 5. These disks are similar to those created in high-resolution hydrodynamical simulations of gas-rich galaxy mergers, and favor short coalescence times for binary black holes. The few galaxies in our sample in earlier stages of mergers have disks which are larger (reff2001800r_{eff}\sim200-1800 pc) and likely are remnants of the galactic disks that have not yet been completely disrupted by the merger.Comment: accepted for publication in Ap

    The Detection of Intergalactic Halpha Emission from the Slug Nebula at z~2.3

    Full text link
    The Slug Nebula is one of the largest and most luminous Lyman-alpha (LyA) nebulae discovered to date, extending over 450 kiloparsecs (kpc) around the bright quasar UM287 at z=2.283. Characterized by high surface brightnesses over intergalactic scales, its LyA emission may either trace high-density ionized gas ("clumps") or large column densities of neutral material. To distinguish between these two possibilities, information from a non-resonant line such as Halpha is crucial. Therefore, we analyzed a deep MOSFIRE observation of one of the brightest LyA emitting regions in the Slug Nebula with the goal of detecting associated Halpha emission. We also obtained a deep, moderate resolution LyA spectrum of the nearby brightest region of the Slug. We detected an Halpha flux of F_(Halpha)= 2.62 +/- 0.47 x 10^-17 erg/cm^2/s (SB_(Halpha)=2.70 +/- 0.48 x 10^-18 erg/cm^2/s/sq") at the expected spatial and spectral location. Combining the Halpha detection with its corresponding LyA flux (determined from the narrow-band imaging) we calculate a flux ratio of F_(LyA_/F_(Halpha)= 5.5 +/- 1.1. The presence of a skyline at the location of the Halpha emission decreases the signal to noise ratio of the detection and our ability to put stringent constraints on the Halpha kinematics. Our measurements argue for the origin of the LyA emission being recombination radiation, suggesting the presence of high-density ionized gas. Finally, our high-resolution spectroscopic study of the LyA emission does not show evidence of a rotating disk pattern and suggest a more complex origin for at least some parts of the Slug Nebula.Comment: 17 pages, 9 figures, final version including referee's comments after acceptanc

    The Dependence of Star Formation Rates on Stellar Mass and Environment at z~0.8

    Full text link
    We examine the star formation rates (SFRs) of galaxies in a redshift slice encompassing the z=0.834 cluster RX J0152.7-1357. We used a low-dispersion prism in the Inamori Magellan Areal Camera and Spectrograph (IMACS) to identify galaxies with z<23.3 AB mag in diverse environments around the cluster out to projected distances of ~8 Mpc from the cluster center. We utilize a mass-limited sample (M>2x10^{10} M_sun) of 330 galaxies that were imaged by Spitzer MIPS at 24 micron to derive SFRs and study the dependence of specific SFR (SSFR) on stellar mass and environment. We find that the SFR and SSFR show a strong decrease with increasing local density, similar to the relation at z~0. Our result contrasts with other work at z~1 that find the SFR-density trend to reverse for luminosity-limited samples. These other results appear to be driven by star-formation in lower mass systems (M~10^{10} M_sun). Our results imply that the processes that shut down star-formation are present in groups and other dense regions in the field. Our data also suggest that the lower SFRs of galaxies in higher density environments may reflect a change in the ratio of star-forming to non-star-forming galaxies, rather than a change in SFRs. As a consequence, the SFRs of star-forming galaxies, in environments ranging from small groups to clusters, appear to be similar and largely unaffected by the local processes that truncate star-formation at z~0.8.Comment: 5 pages, 3 figures, accepted for publication in ApJ
    corecore