285 research outputs found

    Chromatin: a tunable spring at work inside chromosomes

    Full text link
    This paper focuses on mechanical aspects of chromatin biological functioning. Within a basic geometric modeling of the chromatin assembly, we give for the first time the complete set of elastic constants (twist and bend persistence lengths, stretch modulus and twist-stretch coupling constant) of the so-called 30-nm chromatin fiber, in terms of DNA elastic properties and geometric properties of the fiber assembly. The computation naturally embeds the fiber within a current analytical model known as the ``extensible worm-like rope'', allowing a straightforward prediction of the force-extension curves. We show that these elastic constants are strongly sensitive to the linker length, up to 1 bp, or equivalently to its twist, and might locally reach very low values, yielding a highly flexible and extensible domain in the fiber. In particular, the twist-stretch coupling constant, reflecting the chirality of the chromatin fiber, exhibits steep variations and sign changes when the linker length is varied. We argue that this tunable elasticity might be a key feature for chromatin function, for instance in the initiation and regulation of transcription.Comment: 38 pages 15 figure

    Saturation Behavior: a general relationship described by a simple second-order differential equation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The numerous natural phenomena that exhibit saturation behavior, <it>e.g</it>., ligand binding and enzyme kinetics, have been approached, to date, via empirical and particular analyses. This paper presents a mechanism-free, and assumption-free, second-order differential equation, designed only to describe a typical relationship between the variables governing these phenomena. It develops a mathematical model for this relation, based solely on the analysis of the typical experimental data plot and its saturation characteristics. Its utility complements the traditional empirical approaches.</p> <p>Results</p> <p>For the general saturation curve, described in terms of its independent (<it>x</it>) and dependent (<it>y</it>) variables, a second-order differential equation is obtained that applies to any saturation phenomena. It shows that the driving factor for the basic saturation behavior is the probability of the interactive site being free, which is described quantitatively. Solving the equation relates the variables in terms of the two empirical constants common to all these phenomena, the initial slope of the data plot and the limiting value at saturation. A first-order differential equation for the slope emerged that led to the concept of the effective binding rate at the active site and its dependence on the calculable probability the interactive site is free. These results are illustrated using specific cases, including ligand binding and enzyme kinetics. This leads to a revised understanding of how to interpret the empirical constants, in terms of the variables pertinent to the phenomenon under study.</p> <p>Conclusions</p> <p>The second-order differential equation revealed the basic underlying relations that describe these saturation phenomena, and the basic mathematical properties of the standard experimental data plot. It was shown how to integrate this differential equation, and define the common basic properties of these phenomena. The results regarding the importance of the slope and the new perspectives on the empirical constants governing the behavior of these phenomena led to an alternative perspective on saturation behavior kinetics. Their essential commonality was revealed by this analysis, based on the second-order differential equation.</p

    Phenotypic variation of erythrocyte linker histone H1.c in a pheasant (Phasianus colchicus L.) population

    Get PDF
    Our goal was to characterize a phenotypic variation of the pheasant erythrocyte linker histone subtype H1.c. By using two-dimensional polyacrylamide gel electrophoresis three histone H1.c phenotypes were identified. The differently migrating allelic variants H1.c1 and H1.c2 formed either two homozygous phenotypes, c1 and c2, or a single heterozygous phenotype, c1c2. In the pheasant population screened, birds with phenotype c2 were the most common (frequency 0.761) while individuals with phenotype c1 were rare (frequency 0.043)

    Preferentially Quantized Linker DNA Lengths in Saccharomyces cerevisiae

    Get PDF
    The exact lengths of linker DNAs connecting adjacent nucleosomes specify the intrinsic three-dimensional structures of eukaryotic chromatin fibers. Some studies suggest that linker DNA lengths preferentially occur at certain quantized values, differing one from another by integral multiples of the DNA helical repeat, ∼10 bp; however, studies in the literature are inconsistent. Here, we investigate linker DNA length distributions in the yeast Saccharomyces cerevisiae genome, using two novel methods: a Fourier analysis of genomic dinucleotide periodicities adjacent to experimentally mapped nucleosomes and a duration hidden Markov model applied to experimentally defined dinucleosomes. Both methods reveal that linker DNA lengths in yeast are preferentially periodic at the DNA helical repeat (∼10 bp), obeying the forms 10n+5 bp (integer n). This 10 bp periodicity implies an ordered superhelical intrinsic structure for the average chromatin fiber in yeast

    The Terminal Immunoglobulin-Like Repeats of LigA and LigB of Leptospira Enhance Their Binding to Gelatin Binding Domain of Fibronectin and Host Cells

    Get PDF
    Leptospira spp. are pathogenic spirochetes that cause the zoonotic disease leptospirosis. Leptospiral immunoglobulin (Ig)-like protein B (LigB) contributes to the binding of Leptospira to extracellular matrix proteins such as fibronectin, fibrinogen, laminin, elastin, tropoelastin and collagen. A high-affinity Fn-binding region of LigB has been localized to LigBCen2, which contains the partial 11th and full 12th Ig-like repeats (LigBCen2R) and 47 amino acids of the non-repeat region (LigBCen2NR) of LigB. In this study, the gelatin binding domain of fibronectin was shown to interact with LigBCen2R (KD = 1.91±0.40 µM). Not only LigBCen2R but also other Ig-like domains of Lig proteins including LigAVar7'-8, LigAVar10, LigAVar11, LigAVar12, LigAVar13, LigBCen7'-8, and LigBCen9 bind to GBD. Interestingly, a large gain in affinity was achieved through an avidity effect, with the terminal domains, 13th (LigA) or 12th (LigB) Ig-like repeat of Lig protein (LigAVar7'-13 and LigBCen7'-12) enhancing binding affinity approximately 51 and 28 fold, respectively, compared to recombinant proteins without this terminal repeat. In addition, the inhibited effect on MDCKs cells can also be promoted by Lig proteins with terminal domains, but these two domains are not required for gelatin binding domain binding and cell adhesion. Interestingly, Lig proteins with the terminal domains could form compact structures with a round shape mediated by multidomain interaction. This is the first report about the interaction of gelatin binding domain of Fn and Lig proteins and provides an example of Lig-gelatin binding domain binding mediating bacterial-host interaction

    Elucidating the mechanism of ferrocytochrome c heme disruption by peroxidized cardiolipin

    Get PDF
    The interaction of peroxidized cardiolipin with ferrocytochrome c induces two kinetically and chemically distinct processes. The first is a rapid oxidation of ferrocytochrome c, followed by a slower, irreversible disruption of heme c. The oxidation of ferrocytochrome c by peroxidized cardiolipin is explained by a Fenton-type reaction. Heme scission is a consequence of the radical-mediated reactions initiated by the interaction of ferric heme iron with peroxidized cardiolipin. Simultaneously with the heme c disruption, generation of hydroxyl radical is detected by EPR spectroscopy using the spin trapping technique. The resulting apocytochrome c sediments as a heterogeneous mixture of high aggregates, as judged by sedimentation analysis. Both the oxidative process and the destructive process were suppressed by nonionic detergents and/or high ionic strength. The mechanism for generating radicals and heme rupture is presented

    Oligonucleotide Sequence Motifs as Nucleosome Positioning Signals

    Get PDF
    To gain a better understanding of the sequence patterns that characterize positioned nucleosomes, we first performed an analysis of the periodicities of the 256 tetranucleotides in a yeast genome-wide library of nucleosomal DNA sequences that was prepared by in vitro reconstitution. The approach entailed the identification and analysis of 24 unique tetranucleotides that were defined by 8 consensus sequences. These consensus sequences were shown to be responsible for most if not all of the tetranucleotide and dinucleotide periodicities displayed by the entire library, demonstrating that the periodicities of dinucleotides that characterize the yeast genome are, in actuality, due primarily to the 8 consensus sequences. A novel combination of experimental and bioinformatic approaches was then used to show that these tetranucleotides are important for preferred formation of nucleosomes at specific sites along DNA in vitro. These results were then compared to tetranucleotide patterns in genome-wide in vivo libraries from yeast and C. elegans in order to assess the contributions of DNA sequence in the control of nucleosome residency in the cell. These comparisons revealed striking similarities in the tetranucleotide occurrence profiles that are likely to be involved in nucleosome positioning in both in vitro and in vivo libraries, suggesting that DNA sequence is an important factor in the control of nucleosome placement in vivo. However, the strengths of the tetranucleotide periodicities were 3–4 fold higher in the in vitro as compared to the in vivo libraries, which implies that DNA sequence plays less of a role in dictating nucleosome positions in vivo. The results of this study have important implications for models of sequence-dependent positioning since they suggest that a defined subset of tetranucleotides is involved in preferred nucleosome occupancy and that these tetranucleotides are the major source of the dinucleotide periodicities that are characteristic of positioned nucleosomes

    Physical properties of naked DNA influence nucleosome positioning and correlate with transcription start and termination sites in yeast

    Get PDF
    Abstract Background In eukaryotic organisms, DNA is packaged into chromatin structure, where most of DNA is wrapped into nucleosomes. DNA compaction and nucleosome positioning have clear functional implications, since they modulate the accessibility of genomic regions to regulatory proteins. Despite the intensive research effort focused in this area, the rules defining nucleosome positioning and the location of DNA regulatory regions still remain elusive. Results Naked (histone-free) and nucleosomal DNA from yeast were digested by microccocal nuclease (MNase) and sequenced genome-wide. MNase cutting preferences were determined for both naked and nucleosomal DNAs. Integration of their sequencing profiles with DNA conformational descriptors derived from atomistic molecular dynamic simulations enabled us to extract the physical properties of DNA on a genomic scale and to correlate them with chromatin structure and gene regulation. The local structure of DNA around regulatory regions was found to be unusually flexible and to display a unique pattern of nucleosome positioning. Ab initio physical descriptors derived from molecular dynamics were used to develop a computational method that accurately predicts nucleosome enriched and depleted regions. Conclusions Our experimental and computational analyses jointly demonstrate a clear correlation between sequence-dependent physical properties of naked DNA and regulatory signals in the chromatin structure. These results demonstrate that nucleosome positioning around TSS (Transcription Start Site) and TTS (Transcription Termination Site) (at least in yeast) is strongly dependent on DNA physical properties, which can define a basal regulatory mechanism of gene expression

    Nucleosomes in gene regulation: theoretical approaches

    Get PDF
    This work reviews current theoretical approaches of biophysics and bioinformatics for the description of nucleosome arrangements in chromatin and transcription factor binding to nucleosomal organized DNA. The role of nucleosomes in gene regulation is discussed from molecular-mechanistic and biological point of view. In addition to classical problems of this field, actual questions of epigenetic regulation are discussed. The authors selected for discussion what seem to be the most interesting concepts and hypotheses. Mathematical approaches are described in a simplified language to attract attention to the most important directions of this field
    corecore