167 research outputs found

    Estimating radiation effective doses from whole body computed tomography scans based on U.S. soldier patient height and weight

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to explore how a patient's height and weight can be used to predict the effective dose to a reference phantom with similar height and weight from a chest abdomen pelvis computed tomography scan when machine-based parameters are unknown. Since machine-based scanning parameters can be misplaced or lost, a predictive model will enable the medical professional to quantify a patient's cumulative radiation dose.</p> <p>Methods</p> <p>One hundred mathematical phantoms of varying heights and weights were defined within an x-ray Monte Carlo based software code in order to calculate organ absorbed doses and effective doses from a chest abdomen pelvis scan. Regression analysis was used to develop an effective dose predictive model. The regression model was experimentally verified using anthropomorphic phantoms and validated against a real patient population.</p> <p>Results</p> <p>Estimates of the effective doses as calculated by the predictive model were within 10% of the estimates of the effective doses using experimentally measured absorbed doses within the anthropomorphic phantoms. Comparisons of the patient population effective doses show that the predictive model is within 33% of current methods of estimating effective dose using machine-based parameters.</p> <p>Conclusions</p> <p>A patient's height and weight can be used to estimate the effective dose from a chest abdomen pelvis computed tomography scan. The presented predictive model can be used interchangeably with current effective dose estimating techniques that rely on computed tomography machine-based techniques.</p

    Pyroglutamate Abeta pathology in APP/PS1KI mice, sporadic and familial Alzheimer’s disease cases

    Get PDF
    The presence of AβpE3 (N-terminal truncated Aβ starting with pyroglutamate) in Alzheimer’s disease (AD) has received considerable attention since the discovery that this peptide represents a dominant fraction of Aβ peptides in senile plaques of AD brains. This was later confirmed by other reports investigating AD and Down’s syndrome postmortem brain tissue. Importantly, AβpE3 has a higher aggregation propensity, and stability, and shows an increased toxicity compared to full-length Aβ. We have recently shown that intraneuronal accumulation of AβpE3 peptides induces a severe neuron loss and an associated neurological phenotype in the TBA2 mouse model for AD. Given the increasing interest in AβpE3, we have generated two novel monoclonal antibodies which were characterized as highly specific for AβpE3 peptides and herein used to analyze plaque deposition in APP/PS1KI mice, an AD model with severe neuron loss and learning deficits. This was compared with the plaque pattern present in brain tissue from sporadic and familial AD cases. Abundant plaques positive for AβpE3 were present in patients with sporadic AD and familial AD including those carrying mutations in APP (arctic and Swedish) and PS1. Interestingly, in APP/PS1KI mice we observed a continuous increase in AβpE3 plaque load with increasing age, while the density for Aβ1-x plaques declined with aging. We therefore assume that, in particular, the peptides starting with position 1 of Aβ are N-truncated as disease progresses, and that, AβpE3 positive plaques are resistant to age-dependent degradation likely due to their high stability and propensity to aggregate

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Iranian staff nurses' views of their productivity and human resource factors improving and impeding it: a qualitative study

    Get PDF
    BACKGROUND: Nurses, as the largest human resource element of health care systems, have a major role in providing ongoing, high-quality care to patients. Productivity is a significant indicator of professional development within any professional group, including nurses. The human resource element has been identified as the most important factor affecting productivity. This research aimed to explore nurses' perceptions and experiences of productivity and human resource factors improving or impeding it. METHOD: A qualitative approach was used to obtain rich data; open, semi-structured interviews were also conducted. The sampling was based on the maximum variant approach; data analysis was carried out by content analysis, with the constant comparative method. RESULTS: Participants indicated that human resources issues are the most important factor in promoting or impeding their productivity. They suggested that the factors influencing effectiveness of human resource elements include: systematic evaluation of staff numbers; a sound selection process based on verifiable criteria; provision of an adequate staffing level throughout the year; full involvement of the ward sister in the process of admitting patients; and sound communication within the care team. Paying attention to these factors creates a suitable background for improved productivity and decreases negative impacts of human resource shortages, whereas ignoring or interfering with them would result in lowering of nurses' productivity. CONCLUSION: Participants maintained that satisfactory human resources can improve nurses' productivity and the quality of care they provide; thereby fulfilling the core objective of the health care system

    COL25A1 triggers and promotes Alzheimer’s disease-like pathology in vivo

    Get PDF
    Collagen XXV alpha 1 (COL25A1) is a collagenous type II transmembrane protein purified from senile plaques of Alzheimer’s disease (AD) brains. COL25A1 alleles have been associated with increased risk for AD in a Swedish population. COL25A1 is specifically expressed in neurons and binds to aggregated Aβ in vitro. However, its contribution to the pathogenesis of AD and in vivo function are unknown. Here, we report that over-expression of COL25A1 in transgenic mice increases p35/p25 and β-site APP-cleaving enzyme 1 (BACE1) levels, facilitates intracellular aggregation and extracellular matrix deposits of Aβ, and causes synaptophysin loss and astrocyte activation. COL25A1 mice displayed reduced anxiety-like behavior in elevated plus maze and open field tests and significantly slower swimming speed in Morris water maze. In stable cell lines, motifs in noncollagenous domains of COL25A1 were important for the induction of BACE1 expression. These findings demonstrate that COL25A1 leads to AD-like pathology in vivo. Modulation of COL25A1 function may represent an alternative therapeutic intervention for AD

    Intraneuronal pyroglutamate-Abeta 3–42 triggers neurodegeneration and lethal neurological deficits in a transgenic mouse model

    Get PDF
    It is well established that only a fraction of Aβ peptides in the brain of Alzheimer’s disease (AD) patients start with N-terminal aspartate (Aβ1D) which is generated by proteolytic processing of amyloid precursor protein (APP) by BACE. N-terminally truncated and pyroglutamate modified Aβ starting at position 3 and ending with amino acid 42 [Aβ3(pE)–42] have been previously shown to represent a major species in the brain of AD patients. When compared with Aβ1–42, this peptide has stronger aggregation propensity and increased toxicity in vitro. Although it is unknown which peptidases remove the first two N-terminal amino acids, the cyclization of Aβ at N-terminal glutamate can be catalyzed in vitro. Here, we show that Aβ3(pE)–42 induces neurodegeneration and concomitant neurological deficits in a novel mouse model (TBA2 transgenic mice). Although TBA2 transgenic mice exhibit a strong neuronal expression of Aβ3–42 predominantly in hippocampus and cerebellum, few plaques were found in the cortex, cerebellum, brain stem and thalamus. The levels of converted Aβ3(pE)-42 in TBA2 mice were comparable to the APP/PS1KI mouse model with robust neuron loss and associated behavioral deficits. Eight weeks after birth TBA2 mice developed massive neurological impairments together with abundant loss of Purkinje cells. Although the TBA2 model lacks important AD-typical neuropathological features like tangles and hippocampal degeneration, it clearly demonstrates that intraneuronal Aβ3(pE)–42 is neurotoxic in vivo

    Tetraspanin CD151 is a novel prognostic marker in poor outcome endometrial cancer

    Get PDF
    BACKGROUND: Type II cancers account for 10% of endometrial cancers but 50% of recurrence. Response rates to chemotherapy at recurrence are poor and better prognostic markers are needed to guide therapy. CD151 is a small transmembrane protein that regulates cell migration and facilitates cancer metastasis. High CD151 expression confers poor prognosis in breast, pancreatic and colorectal cancer. The prognostic significance of tetraspanin CD151 expression in poor outcome endometrial cancers was evaluated, along with oestrogen receptor (ER), progesterone receptor (PR), p53, human epidermal growth factor receptor -2 (HER-2), and CD 151 staining compared with α6β1, α3β1 integrins, and E-cadherin. METHODS: Tissue microarray constructed from 156 poor outcome endometrial cancers, tested with immunohistochemistry and staining correlated with clinicopathological data were used. A total of 131 data sets were complete for analysis. RESULTS: Expression of CD151 was significantly higher in uterine papillary serous and clear cell carcinoma than in grade 3 endometrioid carcinoma, sarcoma or carcinosarcoma (P<0.001). In univariate analysis, age, stage, histology type and CD151 were significant for both recurrence free (RFS) and disease specific survival (DSS). In multivariate analyses, CD151 was significant for RFS and DSS (P=0.036 and 0.033, respectively) in triple negative (ER, PR and HER-2 negative) tumours (88/131). The HER-2, p53, ER and PR were not prognostic for survival. There was strong concordance of CD151 with E-cadherin (98%), but not with α6β1 (35%), α3β1 staining (60%). CONCLUSION: The CD151 is a novel marker in type 2 cancers that can guide therapeutic decisions. CD151 may have an important role in tumourigenesis in some histology types

    Multiple Events Lead to Dendritic Spine Loss in Triple Transgenic Alzheimer's Disease Mice

    Get PDF
    The pathology of Alzheimer's disease (AD) is characterized by the accumulation of amyloid-β (Aβ) peptide, hyperphosphorylated tau protein, neuronal death, and synaptic loss. By means of long-term two-photon in vivo imaging and confocal imaging, we characterized the spatio-temporal pattern of dendritic spine loss for the first time in 3xTg-AD mice. These mice exhibit an early loss of layer III neurons at 4 months of age, at a time when only soluble Aβ is abundant. Later on, dendritic spines are lost around amyloid plaques once they appear at 13 months of age. At the same age, we observed spine loss also in areas apart from amyloid plaques. This plaque independent spine loss manifests exclusively at dystrophic dendrites that accumulate both soluble Aβ and hyperphosphorylated tau intracellularly. Collectively, our data shows that three spatio-temporally independent events contribute to a net loss of dendritic spines. These events coincided either with the occurrence of intracellular soluble or extracellular fibrillar Aβ alone, or the combination of intracellular soluble Aβ and hyperphosphorylated tau
    corecore