26 research outputs found

    Epitaxial Growth of Two-dimensional Insulator Monolayer Honeycomb BeO

    Full text link
    The emergence of two-dimensional (2D) materials launched a fascinating frontier of flatland electronics. Most crystalline atomic layer materials are based on layered van der Waals materials with weak interlayer bonding, which naturally leads to thermodynamically stable monolayers. We report the synthesis of a 2D insulator comprised of a single atomic sheet of honeycomb structure BeO (h-BeO), although its bulk counterpart has a wurtzite structure. The h-BeO is grown by molecular beam epitaxy (MBE) on Ag(111) thin films that are conveniently grown on Si(111) wafers. Using scanning tunneling microscopy and spectroscopy (STM/S), the honeycomb BeO lattice constant is determined to be 2.65 angstrom with an insulating band gap of 6 eV. Our low energy electron diffraction (LEED) measurements indicate that the h-BeO forms a continuous layer with good crystallinity at the millimeter scale. Moir\'e pattern analysis shows the BeO honeycomb structure maintains long range phase coherence in atomic registry even across Ag steps. We find that the interaction between the h-BeO layer and the Ag(111) substrate is weak by using STS and complimentary density functional theory calculations. We not only demonstrate the feasibility of growing h-BeO monolayers by MBE, but also illustrate that the large-scale growth, weak substrate interactions, and long-range crystallinity make h-BeO an attractive candidate for future technological applications. More significantly, the ability to create a stable single crystalline atomic sheet without a bulk layered counterpart is an intriguing approach to tailoring novel 2D electronic materials.Comment: 25 pages, 7 figures, submitted to ACS Nano, equal contribution by Hui Zhang and Madisen Holbroo

    Two-step flux synthesis of ultrapure transition metal dichalcogenides

    Full text link
    Here, we describe synthesis of TMD crystals using a two-step flux growth method that eliminates a major potential source of contamination. Detailed characterization of TMDs grown by this two-step method reveals charged and isovalent defects with densities an order of magnitude lower than in TMDs grown by a single-step flux technique. Initial temperature-dependent electrical transport measurements of monolayer WSe2 yield room-temperature hole mobility above 840 cm2/Vs and low-temperature disorder-limited mobility above 44,000 cm2/Vs. Electrical transport measurements of graphene-WSe2 heterostructures fabricated from the two-step flux grown WSe2 also show superior performance: higher graphene mobility, lower charged impurity density, and well-resolved integer quantum Hall states

    Variation in Setal Micromechanics and Performance of Two Gecko Species

    Get PDF
    Biomechanical models of the gecko adhesive system typically focus on setal mechanics from a single gecko species, Gekko gecko. In this study, we compared the predictions from three mathematical models to experimental observations considering an additional gecko species Phelsuma grandis, to quantify interspecific variation in setal micromechanics. We also considered the accuracy of our three focal models: the frictional adhesion model, work of detachment model, and the effective modulus model. Lastly, we report a novel approach to quantity the angle of toe detachment using the Weibull distribution. Our results suggested the coupling of frictional and adhesive forces in isolated setal arrays first observed in G. gecko is also present in P. grandis although P. grandis displayed a higher toe detachment angle, suggesting they produce more adhesion relative to friction than G. gecko. We also found the angle of toe detachment accurately predicts a species’ maximum performance limit when fit to a Weibull distribution. When considering the energy stored during setal attachment, we observed less work to remove P. grandis arrays when compared to G. gecko, suggesting P. grandis arrays may store less energy during attachment, a conclusion supported by our model estimates of stored elastic energy. Our predictions of the effective elastic modulus model suggested P. grandis arrays to have a lower modulus, Eeff, but our experimental assays did not show differences in moduli between the species. The considered mathematical models successfully estimated most of our experimentally measured performance values, validating our three focal models as template models of gecko adhesion (see Full and Koditschek 1999), and suggesting common setal mechanics for our focal species and possibly for all fibular adhesives. Future anchored models, built upon the above templates, may more accurately predict performance by incorporating additional parameters, such as variation in setal length and diameter. Variation in adhesive performance may affect gecko locomotion and as a result, future ecological observations will help to determine how 31 species with different performance capabilities use their habitat

    Data from: Variation in setal micromechanics and performance of two gecko

    No full text
    Biomechanical models of the gecko adhesive system typically focus on setal mechanics from a single gecko species, Gekko gecko. In this study, we compared the predictions from three mathematical models with experimental observations considering an additional gecko species Phelsuma grandis, to quantify interspecific variation in setal micromechanics. We also considered the accuracy of our three focal models: the frictional adhesion model, work of detachment model, and the effective modulus model. Lastly, we report a novel approach to quantify the angle of toe detachment using the Weibull distribution. Our results suggested the coupling of frictional and adhesive forces in isolated setal arrays, first observed in G. gecko is also present in P. grandis although P. grandis displayed a higher toe detachment angle, suggesting they produce more adhesion relative to friction than G. gecko. We also found the angle of toe detachment accurately predicts a species’ maximum performance limit when fit to a Weibull distribution. When considering the energy stored during setal attachment, we observed less work to remove P. grandis arrays when compared with G. gecko, suggesting P. grandis arrays may store less energy during attachment, a conclusion supported by our model estimates of stored elastic energy. Our predictions of the effective elastic modulus model suggested P. grandis arrays to have a lower modulus, E eff, but our experimental assays did not show differences in moduli between the species. The considered mathematical models successfully estimated most of our experimentally measured performance values, validating our three focal models as template models of gecko adhesion (see Full and Koditschek in J Exp Biol 202(23):3325–3332, 1999), and suggesting common setal mechanics for our focal species and possibly for all fibular adhesives. Future anchored models, built upon the above templates, may more accurately predict performance by incorporating additional parameters, such as variation in setal length and diameter. Variation in adhesive performance may affect gecko locomotion and as a result, future ecological observations will help to determine how species with different performance capabilities use their habitat
    corecore