7 research outputs found
Long-distance migratory shorebirds travel faster towards their breeding grounds, but fly faster post-breeding
Long-distance migrants are assumed to be more time-limited during the pre-breeding season compared to the post-breeding season. Although breeding-related time constraints may be absent post-breeding, additional factors such as predation risk could lead to time constraints that were previously underestimated. By using an automated radio telemetry system, we compared pre- and post-breeding movements of long-distance migrant shorebirds on a continent-wide scale. From 2014 to 2016, we deployed radio transmitters on 1,937 individuals of 4 shorebird species at 13 sites distributed across North America. Following theoretical predictions, all species migrated faster during the pre-breeding season, compared to the post-breeding season. These differences in migration speed between seasons were attributable primarily to longer stopover durations in the post-breeding season. In contrast, and counter to our expectations, all species had higher airspeeds during the post-breeding season, even after accounting for seasonal differences in wind. Arriving at the breeding grounds in good body condition is beneficial for survival and reproductive success and this energetic constraint might explain why airspeeds are not maximised in the pre-breeding season. We show that the higher airspeeds in the post-breeding season precede a wave of avian predators, which could suggest that migrant shorebirds show predation-minimizing behaviour during the post-breeding season. Our results reaffirm the important role of time constraints during northward migration and suggest that both energy and predation-risk constrain migratory behaviour during the post-breeding season
Corticosterone Levels in Relation to Migratory Readiness in Red-Eyed Vireos (\u3ci\u3eVireo olivaceus\u3c/i\u3e)
We examined the relationship between plasma levels of corticosterone and the migratory activity and directional preference of red-eyed vireos during fall migration at the northern coast of the Gulf of Mexico. Corticosterone is thought to play a role in physiological and behavioural processes before, during, and after long-distance migratory flights. An increase in corticosterone at the onset of migratory flights can be expected in birds that are energetically prepared to migrate in a seasonally appropriate southerly direction. Red-eyed vireos (Vireo olivaceus) were tested in orientation cages under clear twilight skies. Just prior to the orientation experiments, blood was sampled to assay baseline corticosterone levels. Average corticosterone level for all birds was 22.8 ng/ml. Red-eyed vireos with higher than average baseline levels of corticosterone were significantly more active in orientation cages compared to birds with lower levels of corticosterone. Moreover, birds with higher than average levels oriented in a southwesterly direction, which is consistent with a trans-Gulf flight, whereas individuals with levels below average showed a NNW mean direction. Although there was no significant difference in baseline levels of corticosterone between fat and lean birds, individual mass loss between capture and test was negatively correlated with corticosterone levels. Results from this study clearly demonstrate that corticosterone influences departure decisions and the choice of direction during migration
Feather isotopes ( δ 2 H f ) and morphometrics reveal population-specific migration patterns of the Blackpoll Warbler ( Setophaga striata )
Blackpoll Warblers ( Setophaga striata ) have declined precipitously according to the North American Breeding Bird Survey, but that survey’s coverage of the boreal breeding range is limited. Migration monitoring offers an attractive tool for additional assessment because migrants from inaccessible portions of the breeding range are included in counts. However, for site-specific trends to be combined into regional or range-wide population trends, the breeding ground origin of the migrants counted at each site must be known. Blackpolls have a loop migration pattern in which spring and fall migrants follow different paths, but very little is known about population-specific routes within North America. We used stable hydrogen isotope assays of tail feathers ( δ 2 H f , 4th rectrix) and wing-length measurements from migration monitoring sites across Canada and the northeastern United States to broadly delineate breeding/natal origins of blackpolls captured at those sites. Blackpolls captured on spring migration in southern Ontario and western Quebec had characteristics expected of birds from breeding range west of the Great Lakes. These birds travel northward from the eastern Gulf of Mexico to Canada east of the Great Lakes before turning westward to reach their final destination between northwestern Ontario and eastern portions of the Northwest Territories. Many birds sampled at Great Lakes sites prior to 2010, but not thereafter, had δ 2 H f and wing-length characteristics expected of breeding range in eastern Canada, suggesting differential rates of population change among regions. Estimates of migratory connectivity indicated considerable mixing of populations from different portions of the breeding range during migration. Our results both corroborate and refine the known clockwise loop migration pattern, provide new insight into spring migration routes across North America, and provide a foundation for incorporating breeding ground origins into estimations of range-wide population trends based on standardized migration counts
Does stress response predict return rate in a migratory bird species? A study of American redstarts and their non-breeding habitat
In vertebrates, the adrenocortical stress response activates an emergency life-history stage, which is thought to promote survival by helping individuals escape life-threatening situations. Although the adrenocortical stress response promotes many behavioural and physiological changes, it remains unclear whether this stress response actually translates into higher survival in wild vertebrates. We measured the adrenocortical stress response of non-breeding American redstarts (Setophaga ruticilla), a migratory bird that wintered in habitats of either high (mangroves) or low suitability (scrubs), and subsequently monitored their return rate during the following non-breeding seasons. The intensity of the adrenocortical stress response was consistent within individuals across the non-breeding season and was positively correlated with return rates in redstarts that wintered in scrubs, but not in redstarts that wintered in mangroves. Thus, in a context-dependent manner, the ability of an individual to physiologically react to stress determines its ability of returning to its non-breeding territory the following winters. For an individual, the ability to mount an important adrenocortical stress response probably benefits to survival. However, this beneficial effect probably depends on an individual's environment and phenotypic characteristics because these two variables are likely to affect its probability of being confronted with life-threatening stressors during its annual life cycle
The Motus Wildlife Tracking System: a collaborative research network to enhance the understanding of wildlife movement
We describe a new collaborative network, the Motus Wildlife Tracking System (Motus; https://motus.org), which is an international network of researchers using coordinated automated radio-telemetry arrays to study movements of small flying organisms including birds, bats, and insects, at local, regional, and hemispheric scales. Radio-telemetry has been a cornerstone of tracking studies for over 50 years, and because of current limitations of geographic positioning systems (GPS) and satellite transmitters, has remained the primary means to track movements of small animals with high temporal and spatial precision. Automated receivers, along with recent miniaturization and digital coding of tags, have further improved the utility of radio-telemetry by allowing many individuals to be tracked continuously and simultaneously across broad landscapes. Motus is novel among automated arrays in that collaborators employ a single radio frequency across receiving stations over a broad geographic scale, allowing individuals to be detected at sites maintained by others. Motus also coordinates, disseminates, and archives detections and associated metadata in a central repository. Combined with the ability to track many individuals simultaneously, Motus has expanded the scope and spatial scale of research questions that can be addressed using radio-telemetry from local to regional and even hemispheric scales. Since its inception in 2012, more than 9000 individuals of over 87 species of birds, bats, and insects have been tracked, resulting in more than 250 million detections. This rich and comprehensive dataset includes detections of individuals during all phases of the annual cycle (breeding, migration, and nonbreeding), and at a variety of spatial scales, resulting in novel insights into the movement behavior of small flying animals. The value of the Motus network will grow as spatial coverage of stations and number of partners and collaborators increases. With continued expansion and support, Motus can provide a framework for global collaboration, and a coordinated approach to solving some of the most complex problems in movement biology and ecology