6 research outputs found

    Prevalence of anal fistulas in Europe: Systematic literature reviews and population-based database analysis

    Full text link
    Introduction: Despite the fact that perianal fistulas are associated with significant morbidity and impaired quality of life, their prevalence in Europe is unknown. The aim of this study was to estimate the prevalence of perianal fistulas in Europe, overall and according to etiology. Methods: Two independent literature reviews were performed using different search strategies to maximize the identification of potentially relevant studies. Data from relevant articles were used to estimate the prevalence of perianal fistulas in Europe. The robustness of the estimate was evaluated using data from a large population-based database from the UK. Results: A total of 26 studies provided epidemiological data on perianal fistulas, of which 16 provided suitable data to estimate the prevalence. Estimations using these data yielded a total prevalence of 1.69 per 10,000 population. Cryptoglandular infection and Crohn’s disease (CD) were the predominant etiologies, with prevalence rates at 0.86 and 0.76 per 10,000 population, respectively. Comparison of prevalence data from the UK population-based database with the European population resulted in a standardized prevalence estimate of all perianal fistulas of 1.83 per 10,000 population, confirming the robustness of the literaturebased estimate. Conclusion: Although in terms of incidence cryptoglandular fistulas were clearly predominant, the prevalence of fistulas in CD and cryptoglandular infection appeared more balanced. This is due to the longer duration and higher frequency of relapses of fistulas in CD. The estimated prevalence implies that perianal fistulas meet the criteria to be considered as a rare condition in Europe (prevalence less than 5 per 10,000 population).This study was funded by Takeda Pharmaceutical U.S.A., Inc. and TiGenix SA

    Putative risk alleles for LATE-NC with hippocampal sclerosis in population-representative autopsy cohorts

    Get PDF
    Limbic-predominant age-related TAR-DNA-binding protein-43 (TDP-43) encephalopathy with hippocampal sclerosis pathology (LATE-NC + HS) is a neurodegenerative disorder characterized by severe hippocampal CA1 neuron loss and TDP-43-pathology, leading to cognitive dysfunction and dementia. Polymorphisms in GRN, TMEM106B and ABCC9 are proposed as LATE-NC + HS risk factors in brain bank collections. To replicate these results in independent population-representative cohorts, hippocampal sections from brains donated to three such studies (Cambridge City over 75-Cohort [CC75C], Cognitive Function and Ageing Study [CFAS], and Vantaa 85+ Study) were stained with hematoxylin-eosin (n = 744) and anti-pTDP-43 (n = 713), and evaluated for LATE-NC + HS and TDP-43 pathology. Single nucleotide polymorphism genotypes in GRN rs5848, TMEM106B rs1990622 and ABCC9 rs704178 were determined. LATE-NC + HS (n = 58) was significantly associated with the GRN rs5848 genotype (chi(2)(2) = 20.61, P <0.001) and T-allele (chi(2)(1) = 21.04, P <0.001), and TMEM106B rs1990622 genotype (Fisher's exact test, P <0.001) and A-allele (chi(2)(1) = 25.75, P <0.001). No differences in ABCC9 rs704178 genotype or allele frequency were found between LATE-NC + HS and non-LATE-NC + HS neuropathology cases. Dentate gyrus TDP-43 pathology associated with GRN and TMEM106B variations, but the association with TMEM106B nullified when LATE-NC + HS cases were excluded. Our results indicate that GRN and TMEM106B are associated with severe loss of CA1 neurons in the aging brain, while ABCC9 was not confirmed as a genetic risk factor for LATE-NC + HS. The association between TMEM106B and LATE-NC + HS may be independent of dentate TDP-43 pathology.Peer reviewe

    Limbic-Predominant Age-Related TDP-43 Encephalopathy (LATE): Consensus Working Group Report

    Get PDF
    We describe a recently recognized disease entity, limbic-predominant age-related TDP-43 encephalopathy (LATE). LATE neuropathological change (LATE-NC) is defined by a stereotypical TDP-43 proteinopathy in older adults, with or without coexisting hippocampal sclerosis pathology. LATE-NC is a common TDP-43 proteinopathy, associated with an amnestic dementia syndrome that mimicked Alzheimer’s-type dementia in retrospective autopsy studies. LATE is distinguished from frontotemporal lobar degeneration with TDP-43 pathology based on its epidemiology (LATE generally affects older subjects), and relatively restricted neuroanatomical distribution of TDP-43 proteinopathy. In community-based autopsy cohorts, ∼25% of brains had sufficient burden of LATE-NC to be associated with discernible cognitive impairment. Many subjects with LATE-NC have comorbid brain pathologies, often including amyloid-β plaques and tauopathy. Given that the ‘oldest-old’ are at greatest risk for LATE-NC, and subjects of advanced age constitute a rapidly growing demographic group in many countries, LATE has an expanding but under-recognized impact on public health. For these reasons, a working group was convened to develop diagnostic criteria for LATE, aiming both to stimulate research and to promote awareness of this pathway to dementia. We report consensus-based recommendations including guidelines for diagnosis and staging of LATE-NC. For routine autopsy workup of LATE-NC, an anatomically-based preliminary staging scheme is proposed with TDP-43 immunohistochemistry on tissue from three brain areas, reflecting a hierarchical pattern of brain involvement: amygdala, hippocampus, and middle frontal gyrus. LATE-NC appears to affect the medial temporal lobe structures preferentially, but other areas also are impacted. Neuroimaging studies demonstrated that subjects with LATE-NC also had atrophy in the medial temporal lobes, frontal cortex, and other brain regions. Genetic studies have thus far indicated five genes with risk alleles for LATE-NC: GRN, TMEM106B, ABCC9, KCNMB2, and APOE. The discovery of these genetic risk variants indicate that LATE shares pathogenetic mechanisms with both frontotemporal lobar degeneration and Alzheimer’s disease, but also suggests disease-specific underlying mechanisms. Large gaps remain in our understanding of LATE. For advances in prevention, diagnosis, and treatment, there is an urgent need for research focused on LATE, including in vitro and animal models. An obstacle to clinical progress is lack of diagnostic tools, such as biofluid or neuroimaging biomarkers, for ante-mortem detection of LATE. Development of a disease biomarker would augment observational studies seeking to further define the risk factors, natural history, and clinical features of LATE, as well as eventual subject recruitment for targeted therapies in clinical trials

    LATE-NC staging in routine neuropathologic diagnosis : an update

    Get PDF
    An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.Peer reviewe

    Frequency of LATE neuropathologic change across the spectrum of Alzheimer’s disease neuropathology: combined data from 13 community-based or population-based autopsy cohorts

    Get PDF
    Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) and Alzheimer’s disease neuropathologic change (ADNC) are each associated with substantial cognitive impairment in aging populations. However, the prevalence of LATE-NC across the full range of ADNC remains uncertain. To address this knowledge gap, neuropathologic, genetic, and clinical data were compiled from 13 high-quality community- and population-based longitudinal studies. Participants were recruited from United States (8 cohorts, including one focusing on Japanese–American men), United Kingdom (2 cohorts), Brazil, Austria, and Finland. The total number of participants included was 6196, and the average age of death was 88.1 years. Not all data were available on each individual and there were differences between the cohorts in study designs and the amount of missing data. Among those with known cognitive status before death (n = 5665), 43.0% were cognitively normal, 14.9% had MCI, and 42.4% had dementia—broadly consistent with epidemiologic data in this age group. Approximately 99% of participants (n = 6125) had available CERAD neuritic amyloid plaque score data. In this subsample, 39.4% had autopsy-confirmed LATE-NC of any stage. Among brains with “frequent” neuritic amyloid plaques, 54.9% had comorbid LATE-NC, whereas in brains with no detected neuritic amyloid plaques, 27.0% had LATE-NC. Data on LATE-NC stages were available for 3803 participants, of which 25% had LATE-NC stage > 1 (associated with cognitive impairment). In the subset of individuals with Thal Aβ phase = 0 (lacking detectable Aβ plaques), the brains with LATE-NC had relatively more severe primary age-related tauopathy (PART). A total of 3267 participants had available clinical data relevant to frontotemporal dementia (FTD), and none were given the clinical diagnosis of definite FTD nor the pathological diagnosis of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP). In the 10 cohorts with detailed neurocognitive assessments proximal to death, cognition tended to be worse with LATE-NC across the full spectrum of ADNC severity. This study provided a credible estimate of the current prevalence of LATE-NC in advanced age. LATE-NC was seen in almost 40% of participants and often, but not always, coexisted with Alzheimer’s disease neuropathology

    Attack phenotypes and disease course in pediatric MOGAD

    No full text
    Abstract Myelin oligodendrocyte glycoprotein antibody‐associated disease (MOGAD) is an autoimmune demyelinating condition that affects children differently than adults. We performed a literature review to assess the presentation and clinical course of pediatric MOGAD. The most common initial phenotype is acute disseminated encephalomyelitis, especially among children younger than five years, followed by optic neuritis (ON) and/or transverse myelitis. Approximately one‐quarter of children with MOGAD have at least one relapse that typically occurs within three years of disease onset and often includes ON, even if ON was not present at onset. Clinical risk factors for a relapsing course have not been elucidated
    corecore