11 research outputs found

    Rare genetic variants explain missing heritability in smoking

    Get PDF
    Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this ‘missing heritability’. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability (hSNP2) was estimated from 0.13 to 0.28 (s.e., 0.10–0.13) in European ancestries, with 35–74% of it attributable to rare variants with minor allele frequencies between 0.01% and 1%. These heritability estimates are 1.5–4 times higher than past estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based estimates of narrow-sense heritability (hped2, 0.18–0.34). In the African ancestry samples, hSNP2 was estimated from 0.03 to 0.33 (s.e., 0.09–0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking

    Multi-ancestry transcriptome-wide association analyses yield insights into tobacco use biology and drug repurposing

    Get PDF
    Most transcriptome-wide association studies (TWASs) so far focus on European ancestry and lack diversity. To overcome this limitation, we aggregated genome-wide association study (GWAS) summary statistics, whole-genome sequences and expression quantitative trait locus (eQTL) data from diverse ancestries. We developed a new approach, TESLA (multi-ancestry integrative study using an optimal linear combination of association statistics), to integrate an eQTL dataset with a multi-ancestry GWAS. By exploiting shared phenotypic effects between ancestries and accommodating potential effect heterogeneities, TESLA improves power over other TWAS methods. When applied to tobacco use phenotypes, TESLA identified 273 new genes, up to 55% more compared with alternative TWAS methods. These hits and subsequent fine mapping using TESLA point to target genes with biological relevance. In silico drug-repurposing analyses highlight several drugs with known efficacy, including dextromethorphan and galantamine, and new drugs such as muscle relaxants that may be repurposed for treating nicotine addiction

    Regulatory considerations surrounding the deployment of Btexpressing cowpea in Africa: report of the deliberations of an expert panel

    No full text
    Cowpea (Vigna unguiculata spp unguiculata) is adapted to the drier agro-ecological zones of West Africa where it is a major source of dietary protein and widely used as a fodder crop. Improving the productivity of cowpea can enhance food availability and security in West Africa. Insect predation – predominately from the legume pod borer (Maruca vitrata), flower thrips (Megalurothrips sjostedti) and a complex of pod-sucking bugs (e.g., Clavigralla spp) – is a major yield-limiting factor in West African cowpea production. Dramatic increases in yield are shown when M. vitrata is controlled with insecticides. However, availability, costs, and safety considerations limit pesticides as a viable option for boosting cowpea production. Development of Bt-cowpea through genetic modification (GM) to control the legume pod borer is a promising approach to cowpea improvement. Cowpea expressing the lepidopteran-active Cry1Ab protein from Bacillus thuringiensis is being developed as a first generation Bt-cowpea crop for West Africa. Appropriate stewardship of Bt-cowpea to assure its sustainability under West African conditions is critical to its successful development. A first step in this process is an environmental risk assessment to determine the likelihood and magnitude of adverse effects of the Cry1Ab protein on key environmental protection goals in West Africa. Here we describe the results of an expert panel convened in 2009 to develop the problem formulation phase for Bt-cowpea and to address specific issues around gene flow, non-target arthropods, and insect resistance management

    Biotechnological Approaches for Improvement and Conservation of Prunus Species

    No full text

    Search for multimessenger sources of gravitational waves and high-energy neutrinos with Advanced LIGO during its first observing run, ANTARES, and IceCube

    No full text
    Astrophysical sources of gravitational waves, such as binary neutron star and black hole mergers or core-collapse supernovae, can drive relativistic outflows, giving rise to non-thermal high-energy emission. High-energy neutrinos are signatures of such outflows. The detection of gravitational waves and high-energy neutrinos from common sources could help establish the connection between the dynamics of the progenitor and the properties of the outflow. We searched for associated emission of gravitational waves and high-energy neutrinos from astrophysical transients with minimal assumptions using data from Advanced LIGO from its first observing run O1, and data from the Antares and IceCube neutrino observatories from the same time period. We focused on candidate events whose astrophysical origins could not be determined from a single messenger. We found no significant coincident candidate, which we used to constrain the rate density of astrophysical sources dependent on their gravitational-wave and neutrino emission processes

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore