8,490 research outputs found
A Volume Clearing Algorithm for Muon Tomography
The primary objective is to enhance muon-tomographic image reconstruction
capability by providing distinctive information in terms of deciding on the
properties of regions or voxels within a probed volume "V" during any point of
scanning: threat type, non-threat type, or not-sufficient data. An algorithm
(MTclear) is being developed to ray-trace muon tracks and count how many
straight tracks are passing through a voxel. If a voxel "v" has sufficient
number of straight tracks (t), then "v" is a non-threat type voxel, unless
there are sufficient number of scattering points (p) in "v" that will make it a
threat-type voxel. The algorithm also keeps track of voxels for which not
enough information is known: where p and v both fall below their respective
threshold parameters. We present preliminary results showing how the algorithm
works on data collected with a Muon Tomography station based on gas electron
multipliers operated by our group. The MTclear algorithm provides more
comprehensive information to a human operator or to a decision algorithm than
that provided by conventional muon-tomographic reconstruction algorithms, in
terms of qualitatively determining the threat possibility from a probed volume.
This is quite important because only low numbers of cosmic ray source muons are
typically available in nature for tomography, while a quick determination of
threats is essential.Comment: 3 pages, 3 figures, submitted to conf. record of 2014 IEEE Nucl. Sci.
Symposium, Seattl
Summary and Outlook of the International Workshop on Aging Phenomena in Gaseous Detectors (DESY, Hamburg, October, 2001)
High Energy Physics experiments are currently entering a new era which
requires the operation of gaseous particle detectors at unprecedented high
rates and integrated particle fluxes. Full functionality of such detectors over
the lifetime of an experiment in a harsh radiation environment is of prime
concern to the involved experimenters. New classes of gaseous detectors such as
large-scale straw-type detectors, Micro-pattern Gas Detectors and related
detector types with their own specific aging effects have evolved since the
first workshop on wire chamber aging was held at LBL, Berkeley in 1986. In
light of these developments and as detector aging is a notoriously complex
field, the goal of the workshop was to provide a forum for interested
experimentalists to review the progress in understanding of aging effects and
to exchange recent experiences. A brief summary of the main results and
experiences reported at the 2001 workshop is presented, with the goal of
providing a systematic review of aging effects in state-of-the-art and future
gaseous detectors.Comment: 14 pages, 2 pictures. Presented at the IEEE Nuclear Science Symposium
and Medical Imaging Conference, November 4-10, 2001, San Diego, USA.
Submitted to IEEE Trans. Nucl. Sci (IEEE-TNS
The Outer Tracker Detector of the HERA-B Experiment Part I: Detector
The HERA-B Outer Tracker is a large system of planar drift chambers with
about 113000 read-out channels. Its inner part has been designed to be exposed
to a particle flux of up to 2.10^5 cm^-2 s^-1, thus coping with conditions
similar to those expected for future hadron collider experiments. 13
superlayers, each consisting of two individual chambers, have been assembled
and installed in the experiment. The stereo layers inside each chamber are
composed of honeycomb drift tube modules with 5 and 10 mm diameter cells.
Chamber aging is prevented by coating the cathode foils with thin layers of
copper and gold, together with a proper drift gas choice. Longitudinal wire
segmentation is used to limit the occupancy in the most irradiated detector
regions to about 20 %. The production of 978 modules was distributed among six
different laboratories and took 15 months. For all materials in the fiducial
region of the detector good compromises of stability versus thickness were
found. A closed-loop gas system supplies the Ar/CF4/CO2 gas mixture to all
chambers. The successful operation of the HERA-B Outer Tracker shows that a
large tracker can be efficiently built and safely operated under huge radiation
load at a hadron collider.Comment: 28 pages, 14 figure
Construction and Performance of Large-Area Triple-GEM Prototypes for Future Upgrades of the CMS Forward Muon System
At present, part of the forward RPC muon system of the CMS detector at the
CERN LHC remains uninstrumented in the high-\eta region. An international
collaboration is investigating the possibility of covering the 1.6 < |\eta| <
2.4 region of the muon endcaps with large-area triple-GEM detectors. Given
their good spatial resolution, high rate capability, and radiation hardness,
these micro-pattern gas detectors are an appealing option for simultaneously
enhancing muon tracking and triggering capabilities in a future upgrade of the
CMS detector. A general overview of this feasibility study will be presented.
The design and construction of small (10\times10 cm2) and full-size trapezoidal
(1\times0.5 m2) triple-GEM prototypes will be described. During detector
assembly, different techniques for stretching the GEM foils were tested.
Results from measurements with x-rays and from test beam campaigns at the CERN
SPS will be shown for the small and large prototypes. Preliminary simulation
studies on the expected muon reconstruction and trigger performances of this
proposed upgraded muon system will be reported.Comment: 7 pages, 25 figures, submitted for publication in conference record
of the 2011 IEEE Nuclear Science Symposium, Valencia, Spai
Aging Studies for the Large Honeycomb Drift Tube System of the Outer Tracker of HERA-B
The HERA-B Outer Tracker consists of drift tubes folded from polycarbonate
foil and is operated with Ar/CF4/CO2 as drift gas. The detector has to stand
radiation levels which are similar to LHC conditions. The first prototypes
exposed to radiation in HERA-B suffered severe radiation damage due to the
development of self-sustaining currents (Malter effect). In a subsequent
extended R&D program major changes to the original concept for the drift tubes
(surface conductivity, drift gas, production materials) have been developed and
validated for use in harsh radiation environments. In the test program various
aging effects (like Malter currents, gain loss due to anode aging and etching
of the anode gold surface) have been observed and cures by tuning of operation
parameters have been developed.Comment: 14 pages, 6 figures, to be published in the Proceedings of the
International Workshop On Aging Phenomena In Gaseous Detectors, 2-5 Oct 2001,
Hamburg, German
A novel application of Fiber Bragg Grating (FBG) sensors in MPGD
We present a novel application of Fiber Bragg Grating (FBG) sensors in the
construction and characterisation of Micro Pattern Gaseous Detector (MPGD),
with particular attention to the realisation of the largest triple (Gas
electron Multiplier) GEM chambers so far operated, the GE1/1 chambers of the
CMS experiment at LHC. The GE1/1 CMS project consists of 144 GEM chambers of
about 0.5 m2 active area each, employing three GEM foils per chamber, to be
installed in the forward region of the CMS endcap during the long shutdown of
LHC in 2108-2019. The large active area of each GE1/1 chamber consists of GEM
foils that are mechanically stretched in order to secure their flatness and the
consequent uniform performance of the GE1/1 chamber across its whole active
surface. So far FBGs have been used in high energy physics mainly as high
precision positioning and re-positioning sensors and as low cost, easy to
mount, low space consuming temperature sensors. FBGs are also commonly used for
very precise strain measurements in material studies. In this work we present a
novel use of FBGs as flatness and mechanical tensioning sensors applied to the
wide GEM foils of the GE1/1 chambers. A network of FBG sensors have been used
to determine the optimal mechanical tension applied and to characterise the
mechanical tension that should be applied to the foils. We discuss the results
of the test done on a full-sized GE1/1 final prototype, the studies done to
fully characterise the GEM material, how this information was used to define a
standard assembly procedure and possible future developments.Comment: 4 pages, 4 figures, presented by Luigi Benussi at MPGD 2015 (Trieste,
Italy). arXiv admin note: text overlap with arXiv:1512.0848
Performance of a Large-Area GEM Detector Prototype for the Upgrade of the CMS Muon Endcap System
Gas Electron Multiplier (GEM) technology is being considered for the forward
muon upgrade of the CMS experiment in Phase 2 of the CERN LHC. Its first
implementation is planned for the GE1/1 system in the region of the muon endcap mainly to control muon level-1 trigger rates
after the second long LHC shutdown. A GE1/1 triple-GEM detector is read out by
3,072 radial strips with 455 rad pitch arranged in eight -sectors.
We assembled a full-size GE1/1 prototype of 1m length at Florida Tech and
tested it in 20-120 GeV hadron beams at Fermilab using Ar/CO 70:30 and
the RD51 scalable readout system. Four small GEM detectors with 2-D readout and
an average measured azimuthal resolution of 36 rad provided precise
reference tracks. Construction of this largest GEM detector built to-date is
described. Strip cluster parameters, detection efficiency, and spatial
resolution are studied with position and high voltage scans. The plateau
detection efficiency is [97.1 0.2 (stat)]\%. The azimuthal resolution is
found to be [123.5 1.6 (stat)] rad when operating in the center of
the efficiency plateau and using full pulse height information. The resolution
can be slightly improved by 10 rad when correcting for the bias due
to discrete readout strips. The CMS upgrade design calls for readout
electronics with binary hit output. When strip clusters are formed
correspondingly without charge-weighting and with fixed hit thresholds, a
position resolution of [136.8 2.5 stat] rad is measured, consistent
with the expected resolution of strip-pitch/ = 131.3 rad. Other
-sectors of the detector show similar response and performance.Comment: 8 pages, 32 figures, submitted to Proc. 2014 IEEE Nucl. Sci.
Symposium, Seattle, WA, reference adde
A Hadron Blind Detector for the PHENIX Experiment
A novel Hadron Blind Detector (HBD) has been developed for an upgrade of the
PHENIX experiment at RHIC. The HBD will allow a precise measurement of
electron-positron pairs from the decay of the light vector mesons and the
low-mass pair continuum in heavy-ion collisions. The detector consists of a 50
cm long radiator filled with pure CF4 and directly coupled in a windowless
configuration to a triple Gas Electron Multiplier (GEM) detector with a CsI
photocathode evaporated on the top face of the first GEM foil.Comment: 4 pages, 3 figures, Quark Matter 2005 conference proceeding
- …
