661 research outputs found

    Insulator - Insulator Contact Charging as a Function of Pressure

    Get PDF
    Metal - metal and metal - insulator contact or triboelectric charging are well known phenomena with good theoretical understanding of the charge exchange mechanism. However, insulator - insulator charging is not as well understood. Theoretical and experimental research has been performed that shows that the surface charge on an insulator after triboelectric charging with another insulator is rapidly dissipated with lowered atmospheric pressure. This pressure discharge is consistent with surface ions being evaporated off the surface once their vapor pressure is attained. A two-phase equilibrium model based on an ideal gas of singly charged ions in equilibrium with a submonolayer adsorbed film was developed to describe the pressure dependence of the surface charge on an insulator. The resulting charge density equation is an electrostatic version of the Langmuir isotherm

    Multibody aircraft study, volume 2

    Get PDF
    The potential benefits of a multibody aircraft when compared to a single body aircraft are presented. The analyses consist principally of a detailed point design analysis of three multibody and one single body aircraft, based on a selected payload of 350,000 kg (771,618 lb), for final aircraft definitions; sensitivity studies to evaluate the effects of variations in payload, wing semispan body locations, and fuel price; recommendations as to the research and technology requirements needed to validate the multibody concept. Two, two body, one, three body, and one single body aircraft were finalized for the selected payload, with DOC being the prime figure of merit. When compared to the single body, the multibody aircraft showed a reduction in DOC by as much as 11.3 percent. Operating weight was reduced up to 14 percent, and fly away cost reductions ranged from 8.6 to 13.4 percent. Weight reduction, hence cost, of the multibody aircraft resulted primarily from the wing bending relief afforded by the bodies being located outboard on the wing

    Partial Model of Insulator/Insulator Contact Charging

    Get PDF
    Two papers present a two-phase equilibrium model that partly explains insulator/ insulator contact charging. In this model, a vapor of ions within a gas is in equilibrium with a submonolayer of ions of the same species that have been adsorbed on the surface of an insulator. The surface is modeled as having localized states, each with a certain energy of adsorption for an ion. In an earlier version of the model described in the first paper, the ions do not interact with each other. Using the grand canonical ensemble, the chemical potentials of both vapor and absorbed phases are derived and equated to determine the vapor pressure. If a charge is assigned to the vapor particles (in particular, if single ionization is assumed), then the surface charge density associated with adsorbed ions can be calculated as a function of pressure. In a later version of the model presented in the second paper, the submodel of the vapor phase is extended to include electrostatic interactions between vapor ions and adsorbed ones as well as the screening effect, at a given distance from the surface, of ions closer to the surface. Theoretical values of this model closely match preliminary experimental data on the discharge of insulators as a function of pressure

    The influence of rifle carriage on the kinetics of human gait

    Get PDF
    The influence that rifle carriage has on human gait has received little attention in the published literature. Rifle carriage has two main effects, to add load to the anterior of the body and to restrict natural arm swing patterns. Kinetic data were collected from 15 male participants, with 10 trials in each of four experimental conditions. The conditions were: walking without a load (used as a control condition); carrying a lightweight rifle simulator, which restricted arm movements but applied no additional load; wearing a 4.4 kg diving belt, which allowed arms to move freely; carrying a weighted (4.4 kg) replica SA80 rifle. Walking speed was fixed at 1.5 m/s (+5%) and data were sampled at 400 Hz. Results showed that rifle carriage significantly alters the ground reaction forces produced during walking, the most important effects being an increase in the impact peak and mediolateral forces. This study suggests that these effects are due to the increased range of motion of the body’s centre of mass caused by the impeding of natural arm swing patterns. The subsequent effect on the potential development of injuries in rifle carriers is unknown

    Circulating bile acids and adenoma recurrence in the context of adherence to a high-fiber, high-fruit and vegetable, and low-fat dietary intervention

    Get PDF
    INTRODUCTION: Diet may affect bile acid (BA) metabolism and signaling. In turn, BA concentrations may be associated with cancer risk. We investigated (i) associations of BA concentrations with adenoma recurrence and (ii) the effect of a high-fiber, high-fruit and vegetable, and low-fat dietary intervention on serum BA concentrations. METHODS: The Polyp Prevention Trial is a 4-year randomized, controlled trial that investigated the effect of a high-fiber, high-fruit and vegetable, and low-fat diet on colorectal adenoma recurrence. Among 170 participants who reported adhering to the intervention and 198 comparable control arm participants, we measured 15 BAs in baseline, year 2, and year 3 serum using targeted, quantitative liquid chromatography-tandem mass spectrometry. We estimated associations of BAs with adenoma recurrence using multivariable logistic regression and the effect of the dietary intervention on BA concentrations using repeated-measures linear mixed-effects models. In a subset (N = 65), we investigated associations of BAs with 16S rRNA gene sequenced rectal tissue microbiome characteristics. RESULTS: Baseline total BA concentrations were positively associated with adenoma recurrence (odds ratio Q3 vs Q1 = 2.17; 95% confidence interval = 1.19-4.04; Ptrend = 0.03). Although we found no effect of the dietary intervention on BA concentrations, pretrial dietary fiber intake was inversely associated with total baseline BAs (Spearman = -0.15; PFDR = 0.02). BA concentrations were associated with potential colorectal neoplasm-related microbiome features (lower alpha diversity and higher Bacteroides abundance). DISCUSSION: Baseline circulating BAs were positively associated with adenoma recurrence. Although the dietary intervention did not modify BA concentrations, long-term fiber intake may be associated with lower concentrations of BAs that are associated with higher risk of adenoma recurrence

    Paper Session I-A - Electrostatic Charging of Polymers by Particle Impact at Martian Atmospheric Pressurs

    Get PDF
    Studies of the electrostatic interaction between micrometer-sized particles and polymer surfaces are of great interest to NASA’s planetary exploration program. The unmanned landing missions to Mars planned for this decade as well as the possible manned missions that might take place during the second decade of this century require a better understanding of the electrostatic response of the materials used in landing crafts and equipment when exposed to wind-blown dust or to surface dust and sand particles. We report on preliminary experiments designed to measure the electrostatic charge developed on three polymer surfaces as they are impacted by Mars simulant particles less than 5 micrometers in diameter moving at 20 m/s. Experiments were performed in a CO2 atmosphere at 10 mbars of pressure using a particle delivery method that propels the particles without contact. The polymer surfaces, commonly used in space applications, were chosen so that they span the triboelectric series

    History and Flight Devleopment of the Electrodynamic Dust Shield

    Get PDF
    The surfaces of the moon, Mars, and that of some asteroids are covered with a layer of dust that may hinder robotic and human exploration missions. During the Apollo missions, for example, lunar dust caused a number of issues including vision obscuration, false instrument readings, contamination, and elevated temperatures. In fact, some equipment neared failure after only 75 hours on the lunar surface due to effects of lunar dust. NASA's Kennedy Space Center has developed an active technology to remove dust from surfaces during exploration missions. The Electrodynamic Dust Shield (EDS), which consists of a series of embedded electrodes in a high dielectric strength substrate, uses a low power, low frequency signal that produces an electric field wave that travels across the surface. This non-uniform electric field generates dielectrophoretic and electrostatic forces capable of moving dust out of these surfaces. Implementations of the EDS have been developed for solar radiators, optical systems, camera lenses, visors, windows, thermal radiators, and fabrics The EDS implementation for transparent applications (solar panels, optical systems, windows, etc.) uses transparent indium tin oxide electrodes on glass or transparent lm. Extensive testing was performed in a roughly simulated lunar environment (one-sixth gravity at 1 mPa atmospheric pressure) with lunar simulant dust. EDS panels over solar radiators showed dust removal that restored solar panel output reaching values very close to their initial output. EDS implementations for thermal radiator protection (metallic spacecraft surfaces with white thermal paint and reflective films) were also extensively tested at similar high vacuum conditions. Reflectance spectra for these types of implementations showed dust removal efficiencies in the 96% to 99% range. These tests indicate that the EDS technology is now at a Technology Readiness Level of 4 to 5. As part of EDS development, a flight version is being prepared for several flight opportunities. The flight version of the EDS will incorporate significantly smaller electronics, with an expected mass and volume of 500 g and 350 cm(exp. 3) respectively. One of the opportunities is an International Space Station (ISS) experiment: Materials for International Space Station Experiment 10 (MISSE-10). This experiment aims to verify the EDS can withstand the harsh environment of space and will look to closely replicate the solar environment experienced on the moon. A second flight opportunity exists to provide an EDS to several companies as part of NASA's Lunar CATALYST program. The current mission concept would fly the EDS on the footpad of one of the Lunar CATALYST vehicles. Dust will likely deposit on the footpad through normal surface rover activities, but also upon landing where lunar dust is expected to be uplifted. To analyze the e effectiveness of the EDS system, photographs of the footpad with one of the spacecrafts onboard cameras are anticipated. If successful in these test flights, the EDS technology will be ready to be used in the protection of actual mission equipment for future NASA and commercial missions to the moon, asteroids, and Mars
    corecore