30 research outputs found

    Social Reorganization and Household Adaptation in the Aftermath of Collapse at Baking Pot, Belize

    Get PDF
    This dissertation focuses on the adaptations of ancient Maya households to the processes of social reorganization in the aftermath of collapse of Classic Maya rulership at Baking Pot, a small kingdom in the upper Belize River Valley of western Belize. With the depopulation of the central and southern Maya lowlands at the end of the Late Classic period, residents in Settlement Cluster C at Baking Pot persisted following the abandonment of the palace complex in the Terminal Classic period (A.D. 800-900). Results from this study indicate that noble and commoner households in Settlement Cluster C continued to live at Baking Pot, developing strategies of adaptation including expanding interregional mercantile exchange and hosting community feasts in the Terminal Classic and Early Postclassic periods. Breaking from the strict social hierarchies of the Classic period, households were increasingly participating in mercantile exchange in the Terminal Classic and Early Postclassic periods, with exotic luxury items becoming more evenly distributed throughout the community, particularly among commoner households. The even distributions of exotic items, coupled with low-level production of local resources, suggests that households were engaging in interregional networks of exchange, although this did not involve a complete reorganization of economic production. New relationships between noble and commoner households were forged, as noble households hosted large-scale community feasts during the Terminal Classic and Early Postclassic periods. Although households were not found to have been utilizing Pan-Mesoamerican symbols as a form of status differentiation, they did display local Maya iconography on ceramics and other media, displaying a sense of shared identity and cohesion. However, this and other forms of shared identity, such as burial practices, shifted in the transition to the Postclassic period. Overall, households at Baking Pot developed innovative strategies to adapt to the changing social landscape following the sociopolitical collapse of the Classic Maya polity, playing a prominent role in the in the processes of social reorganization in the Postclassic period

    Island resource exploitation by the ancient Maya during periods of climate stress, Ambergris Caye, Belize

    Get PDF
    Ancient Maya societies experienced a period of reorganisation and change in settlement patterns associated with social and climate instability at the end of the Classic period (750-1000 CE) and the subsequent Postclassic period (1200-1500 CE). Although it has been proposed that severe droughts and the breakdown of Classic political systems caused a migration of populations towards the coast, we have little evidence of the nature of land-use at coastal sites. Our understanding of subsistence on islands has been shaped by archaeological research indicating marine-based diets, with maize imported from the mainland. Here we provide, for the first time, palaeoecological proxy data that inform on ancient Maya land-use on an island site, located on Ambergris Caye, Belize. Using pollen and charcoal proxies, we present over 6000 years of environmental change and land-use history. Our reconstruction reveals evidence of cultivation, beginning at 2900 BCE and culminating during the Postclassic Period. We demonstrate that periods of higher land-use intensity correlate with climate instability, which corroborates archaeological evidence of migration to coastal locations. We hypothesize that the diverse marine and terrestrial environments of the island provided sustainable resources for the mainland Maya to use during times of both political and climatic stress

    p3k14c, a synthetic global database of archaeological radiocarbon dates.

    Get PDF
    Archaeologists increasingly use large radiocarbon databases to model prehistoric human demography (also termed paleo-demography). Numerous independent projects, funded over the past decade, have assembled such databases from multiple regions of the world. These data provide unprecedented potential for comparative research on human population ecology and the evolution of social-ecological systems across the Earth. However, these databases have been developed using different sample selection criteria, which has resulted in interoperability issues for global-scale, comparative paleo-demographic research and integration with paleoclimate and paleoenvironmental data. We present a synthetic, global-scale archaeological radiocarbon database composed of 180,070 radiocarbon dates that have been cleaned according to a standardized sample selection criteria. This database increases the reusability of archaeological radiocarbon data and streamlines quality control assessments for various types of paleo-demographic research. As part of an assessment of data quality, we conduct two analyses of sampling bias in the global database at multiple scales. This database is ideal for paleo-demographic research focused on dates-as-data, bayesian modeling, or summed probability distribution methodologies

    Intramuscular lipid concentration increased in localized regions of the lumbar muscles following 60-day bedrest

    Get PDF
    BACKGROUND CONTEXT Prolonged bedrest induces accumulation of intramuscular lipid concentration (ILC) in the lumbar musculature; however, spatial distribution of ILC has not been determined. Artificial gravity (AG) mitigates some adaptations induced by 60-day bedrest by creating a head-to-feet force while participants are in a supine position. PURPOSE To quantify the spatial distribution of accumulation of ILC in the lumbar musculature after 60-day bedrest, and whether this can be mitigated by AG exposure. STUDY DESIGN Prospective longitudinal study. PATIENT SAMPLE Twenty-four healthy individuals (8 females) participated in the study: Eight received 30 min continuous AG (cAG); Eight received 6 × 5min AG (iAG), interspersed with rests; Eight were not exposed to AG (CRTL). OUTCOME MEASURES From 3T magnetic resonance imaging (MRI), axial images were selected to assess lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum (QL), and psoas major (PM) muscles from L1/L2 to L5/S1 intervertebral disc levels. Chemical shift-based 2‐echo lipid/water Dixon sequence was used to measure tissue composition. Each lumbar muscle was segmented into four equal quartiles (from medial to lateral). METHODS Participants arrived at the facility for the baseline data collection before undergoing a 60-day strict 6° head-down tilt (HDT) bedrest period. MRI of the lumbopelvic region was conducted at baseline and Day-59 of bedrest. Participants performed all activities, including hygiene, in 6° HDT and were discouraged from moving excessively or unnecessarily. RESULTS At the L4/L5 and L5/S1 intervertebral disc levels, 60-day bedrest induced a greater increase in ILC in medial and lateral regions (∼+4%) of the LM than central regions (∼+2%; P<0.05). A smaller increase in ILC was induced in the lateral region of LES (∼+1%) at L1/L2 and L2/L3 than at the centro-medial region (∼+2%; P<0.05). There was no difference between CRTL and intervention groups. CONCLUSIONS Inhomogeneous spatial distribution of accumulation of ILC was found in the lumbar musculature after 60-day bedrest. These findings might reflect pathophysiological mechanisms related to muscle disuse and contribute to localized lumbar spine dysfunction. Altered spatial distribution of ILC may impair lumbar spine function after prolonged body unloading, which could increase injury risk to vulnerable soft tissues, such as the lumbar intervertebral discs. These novel results may represent a new biomarker of lumbar deconditioning for astronauts, bedridden, sedentary individuals, or those with chronic back pain. Changes are potentially modifiable but not by the AG protocols tested here

    The effects of reconditioning exercises following prolonged bed rest on lumbopelvic muscle volume and accumulation of paraspinal muscle fat

    Get PDF
    Reduced muscle size and accumulation of paraspinal muscle fat content (PFC) have been reported in lumbopelvic muscles after spaceflights and head-down tilt (HDT) bed rest. While some information is available regarding reconditioning programs on muscle atrophy recovery, the effects on the accumulation of PFC are unknown. Recently, a device (the Functional Re-adaptive Exercise Device-FRED) has been developed which aims to specifically recruit lumbopelvic muscles. This study aimed to investigate the effects of a standard reconditioning (SR) program and SR program supplemented by FRED (SR+FRED) on the recovery of the lumbopelvic muscles following 60-day HDT bed rest. Twenty-four healthy participants arrived at the facility for baseline data collection (BDC) before the bed rest period. They remained in the facility for 13-days post-HDT bed rest and were randomly allocated to one of two reconditioning programs: SR or SR+FRED. Muscle volumes of the lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum (QL), and psoas major (PM) muscles were measured from axial T1-weighted magnetic resonance images (MRI) at all lumbar intervertebral disc levels. PFC was determined using a chemical shift-based lipid/water Dixon sequence. Each lumbopelvic muscle was segmented into four equal quartiles (from medial to lateral). MRI of the lumbopelvic region was conducted at BDC, Day-59 of bed rest (HDT59), and Day-13 after reconditioning (R13). Comparing R13 with BDC, the volumes of the LM muscle at L4/L5 and L5/S1, LES at L1/L2, and QL at L3/L4 had not recovered (all - P<0.05), and the PM muscle remained larger at L1/L2 (P=0.001). Accumulation of PFC in the LM muscle at the L4/L5 and L5/S1 levels remained higher in the centro-medial regions at R13 than BDC (all - P<0.05). There was no difference between the two reconditioning programs. A 2-week reconditioning program was insufficient to fully restore all volumes of lumbopelvic muscles and reverse the accumulation of PFC in the muscles measured to BDC values, particularly in the LM muscle at the lower lumbar levels. These findings suggest that more extended reconditioning programs or alternative exercises may be necessary to fully restore the size and properties of the lumbopelvic muscles after prolonged bed rest

    Gluteal muscle atrophy and increased intramuscular lipid concentration are not mitigated by daily artificial gravity following 60-day head-down tilt bed rest

    Get PDF
    Exposure to spaceflight and head-down tilt (HDT) bed rest leads to decreases in the mass of the gluteal muscle. Preliminary results have suggested that interventions, such as artificial gravity (AG), can partially mitigate some of the physiological adaptations induced by HDT bed rest. However, its effect on the gluteal muscles is currently unknown. This study investigated the effects of daily AG on the gluteal muscles during 60-day HDT bed rest. Twenty-four healthy individuals participated in the study: eight received 30 minutes of continuous AG; eight received 6x5 minutes of AG, interspersed with rest periods; eight belonged to a control group. T1-Weighted Dixon magnetic resonance imaging of the hip region was conducted at baseline and day 59 of HDT bed rest to establish changes in volumes and intramuscular lipid concentration (ILC). Results showed that, across groups, muscle volumes decreased by 9.2 for gluteus maximus (GMAX), 8.0 for gluteus medius (GMED), and 10.5 for gluteus minimus after 59-day HDT bed rest (all P<0.005). The ILC increased by 1.3 for GMAX and 0.5 for GMED (both P<0.05). Neither of the AG protocols mitigated deconditioning of the gluteal muscles. Whereas all gluteal muscles atrophied, the ratio of lipids to intramuscular water increased only in GMAX and GMED muscles. These changes could impair the function of the hip joint and increased the risk of falls. The deconditioning of the gluteal muscles in space may negatively impact the hip joint stability of astronauts when reexpose to terrestrial gravity

    Intermittent short-arm centrifugation is a partially effective countermeasure against upright balance deterioration following 60-day head-down tilt bed rest

    Get PDF
    This study investigated whether artificial gravity (AG), induced by short-radius centrifugation, mitigated deterioration in standing balance and anticipatory postural adjustments (APAs) of trunk muscles following 60-day head-down tilt bed rest. Twenty-four participants were allocated to one of three groups: control group (N=8); 30 minutes continuous AG daily (N=8); intermittent 6x5 minutes AG daily (N=8). Before and immediately after bed rest, standing balance was assessed in four conditions: eyes open and closed on both stable and foam surfaces. Measures including sway path, root-mean-square, and peak sway velocity, sway area, sway frequency power, and sway density curve were extracted from the centre of pressure displacement. APAs were assessed during rapid arm movements using intramuscular or surface electromyography electrodes of the rectus abdominis, obliquus externus and internus abdominis, transversus abdominis, erector spinae at L1, L2, L3, and L4 vertebral levels, and deep lumbar multifidus muscles. The relative latency between the EMG onset of the deltoid and each of the trunk muscles was calculated. All three groups had poorer balance performance in most of the parameters (all P<0.05) and delayed APAs of the trunk muscles following bed rest (all P<0.05). Sway path and sway velocity were deteriorated, and sway frequency power was less in those who received intermittent AG than in the control group (all P<0.05), particularly in conditions with reduced proprioceptive feedback. These data highlight the potential of intermittent AG to mitigate deterioration of some aspects of postural control induced by gravitational unloading, but no protective effects on trunk muscle responses were observed

    Lumbar muscle atrophy and increased relative intramuscular lipid concentration are not mitigated by daily artificial gravity after 60-day head-down tilt bed rest

    Get PDF
    Exposure to axial unloading induces adaptations in paraspinal muscles, as shown after spaceflights. This study investigated whether daily exposure to artificial gravity (AG) mitigated lumbar spine flattening and muscle atrophy associated with 60-day head-down tilt (HDT) bed rest (Earth-based space analogue). Twenty-four healthy individuals participated in the study: Eight received 30 minutes continuous AG; eight received 6x5 minutes AG, interspersed with rest periods; eight received no AG exposure (control group). Magnetic Resonance Imaging (MRI) of the lumbopelvic region was conducted at baseline (BDC) and at day 59 of HDT (HDT59). T1-weighted images were used to assess morphology of the lumbar spine (spinal length, intervertebral disc angles, disc area) and volumes of the lumbar multifidus (LM), lumbar erector spinae (LES), quadratus lumborum (QL), and psoas major (PM) muscles from L1/L2 to L5/S1 vertebral levels. A chemical shift-based 2‐point lipid/water Dixon sequence was used to evaluate muscle composition. Results showed that: spinal length and disc area increased (P<0.05); intervertebral disc angles (P<0.05) and muscle volumes of LM, LES, and QL reduced (P<0.01); and fat/water ratio for the LM and LES muscles increased (P<0.01) after HDT59 in all groups. Neither of the AG protocols mitigated the lumbar spinal deconditioning induced by HDT bed rest. The increase in lipid/water ratio in LM and LES muscles indicates an increased relative intramuscular lipid concentration. Altered muscle composition in atrophied muscles may impair lumbar spine function after body unloading, which could increase injury risk to vulnerable soft tissues. This relationship needs further investigation
    corecore