3,199 research outputs found

    A maximum-likelihood method for improving faint source flux and color estimates

    Full text link
    Flux estimates for faint sources or transients are systematically biased high because there are far more truly faint sources than bright. Corrections which account for this effect are presented as a function of signal-to-noise ratio and the (true) slope of the faint-source number-flux relation. The corrections depend on the source being originally identified in the image in which it is being photometered. If a source has been identified in other data, the corrections are different; a prescription for calculating the corrections is presented. Implications of these corrections for analyses of surveys are discussed; the most important is that sources identified at signal-to-noise ratios of four or less are practically useless.Comment: 9 pp., accepted for publication in PAS

    GaAs-based Self-Aligned Stripe Superluminescent Diodes Processed Normal to the Cleaved Facet

    Get PDF
    We demonstrate GaAs-based superluminescent diodes (SLDs) incorporating a window-like back facet in a self-aligned stripe. SLDs are realised with low spectral modulation depth (SMD) at high power spectral density, without application of anti-reflection coatings. Such application of a window-like facet reduces effective facet reflectivity in a broadband manner. We demonstrate 30mW output power in a narrow bandwidth with only 5% SMD, outline the design criteria for high power and low SMD, and describe the deviation from a linear dependence of SMD on output power as a result of Joule heating in SLDs under continuous wave current injection. Furthermore, SLDs processed normal to the facet demonstrate output powers as high as 20mW, offering improvements in beam quality, ease of packaging and use of real estate. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    Fast computation by block permanents of cumulative distribution functions of order statistics from several populations

    Full text link
    The joint cumulative distribution function for order statistics arising from several different populations is given in terms of the distribution function of the populations. The computational cost of the formula in the case of two populations is still exponential in the worst case, but it is a dramatic improvement compared to the general formula by Bapat and Beg. In the case when only the joint distribution function of a subset of the order statistics of fixed size is needed, the complexity is polynomial, for the case of two populations.Comment: 21 pages, 3 figure

    The First Detections of the Extragalactic Background Light at 3000, 5500, and 8000A (III): Cosmological Implications

    Get PDF
    (Abridged) We have used HST WFPC2 and ground-based spectroscopy to measure the integrated extragalactic background light (EBL) at optical wavelengths. We have also computed the integrated light from individual galaxy counts in the images used to measure the EBL and in the Hubble Deep Field. We find that the flux in galaxies as measured by standard galaxy photometry methods has generally been underestimated by about 50%. Further, we find that the total flux in individually detected galaxies is a factor of 2 to 3 less than the EBL at 3000--8000A. We show that a significant fraction of the EBL may come from normal galaxies at z<4, which are simply undetectable as a result of K-corrections and cosmological surface brightness dimming. This is consistent with recent redshift surveys at z<4. In the context of some simple models, we discuss the constraints placed by the EBL on the evolution of the luminosity density at z>1. Based on our optical EBL and published UV and IR EBL measurements, we estimate that the total EBL from 0.1--1000 microns is 100+/-20 nW/m^2/sr. If the total EBL were produced entirely by stellar nucleosynthesis, then we estimate that the total baryonic mass processed through stars is Omega_* = 0.0062 (+/- 0.0022) h^{-2}, which corresponds to 0.33+/-0.12 Omega_B for currently favored values of the baryon density. This estimate is smaller by roughly 7% if 7 h_{0.7} nW/m^2/sr of the total EBL comes from accretion onto central black holes. This estimate of Omega_* suggests that the universe has been enriched to a total metal mass of 0.21(+/-0.13) Z_sun Omega_B. Our estimate is consistent with other measurements of the cumulative metal mass fraction of stars, stellar remnants, and the intracluster medium of galaxy clusters in the local universe.Comment: Accepted for publication in ApJ, 20 pages using emulateapj.sty, version with higher resolution figures available at http://www.astro.lsa.umich.edu/~rab/publications.html or at http://nedwww.ipac.caltech.edu/level5/Sept01/Bernstein3/frames.htm

    The Statistical Approach to Quantifying Galaxy Evolution

    Get PDF
    Studies of the distribution and evolution of galaxies are of fundamental importance to modern cosmology; these studies, however, are hampered by the complexity of the competing effects of spectral and density evolution. Constructing a spectroscopic sample that is able to unambiguously disentangle these processes is currently excessively prohibitive due to the observational requirements. This paper extends and applies an alternative approach that relies on statistical estimates for both distance (z) and spectral type to a deep multi-band dataset that was obtained for this exact purpose. These statistical estimates are extracted directly from the photometric data by capitalizing on the inherent relationships between flux, redshift, and spectral type. These relationships are encapsulated in the empirical photometric redshift relation which we extend to z ~ 1.2, with an intrinsic dispersion of dz = 0.06. We also develop realistic estimates for the photometric redshift error for individual objects, and introduce the utilization of the galaxy ensemble as a tool for quantifying both a cosmological parameter and its measured error. We present deep, multi-band, optical number counts as a demonstration of the integrity of our sample. Using the photometric redshift and the corresponding redshift error, we can divide our data into different redshift intervals and spectral types. As an example application, we present the number redshift distribution as a function of spectral type.Comment: 40 pages (LaTex), 21 Figures, requires aasms4.sty; Accepted by the Astrophysical Journa

    Transformations between WISE, 2MASS, SDSS and BVRI photometric systems: I. Transformation equations for dwarfs

    Full text link
    We present colour transformations for the conversion of the W1 and W2 magnitudes of WISE photometric system to the Johnson-Cousins' BVRI, SDSS (gri), and 2MASS (JHK_s) photometric systems, for dwarfs. The W3 and W4 magnitudes were not considered due to their insufficient signal to noise ratio (S/N). The coordinates of 825 dwarfs along with their BVRI, gri, and JHK_s data, taken from Bilir et al. (2008) were matched with the coordinates of stars in the preliminary data release of WISE (Wright et al., 2010) and a homogeneous dwarf sample with high S/N ratio have been obtained using the following constraints: 1) the data were dereddened, 2) giants were identified and excluded from the sample, 3) sample stars were selected according to data quality, 4) transformations were derived for sub samples of different metallicity range, and 5) transformations are two colour dependent. These colour transformations, coupled with known absolute magnitudes at shorter wavelenghts, can be used in space density evaluation for the Galactic (thin and thick) discs, at distances larger than the ones evaluated with JHK_s photometry.Comment: 16 pages, including 5 figures and 7 tables, accepted for publication in MNRA

    Quantum heuristic algorithm for traveling salesman problem

    Full text link
    We propose a quantum heuristic algorithm to solve a traveling salesman problem by generalizing Grover search. Sufficient conditions are derived to greatly enhance the probability of finding the tours with extremal costs, reaching almost to unity and they are shown characterized by statistical properties of tour costs. In particular for a Gaussian distribution of the tours along the cost we show that the quantum algorithm exhibits the quadratic speedup of its classical counterpart, similarly to Grover search.Comment: Published versio
    corecore