2,675 research outputs found

    External Shear in Quadruply Imaged Lens Systems

    Get PDF
    We use publicly available N-body simulations and semi-analytic models of galaxy formation to estimate the levels of external shear due to structure near the lens in gravitational lens systems. We also describe two selection effects, specific to four-image systems, that enhance the probability of observing systems to have higher external shear. Ignoring additional contributions from "cosmic shear" and assuming that lens galaxies are not significantly flattened, we find that the mean shear at the position of a quadruple lens galaxy is 0.11, the rms shear is roughly 0.15, and there is roughly a 45% likelihood of external shear greater than 0.1. This is much larger than previous estimates and in good agreement with typical measured external shear. The higher shear primarily stems from the tendency of early-type galaxies, which are the majority of lenses, to reside in overdense regions.Comment: 5 pages, 2 figures, ApJ in press, minor revision

    Faint M-dwarfs and the structure of the Galactic disk

    Get PDF
    We use broadband photometry and low-resolution spectra of a complete sample of late-K and M dwarfs brighter than I=22 in three fields at high galactic latitude to study issues relating to galactic structure and large scale abundance gradients in the Galaxy. The observed starcounts in each field are a good match to the predictions of models based on deep starcount data in other intermediate-latitude fields, and these models identify the late-type stars as members of the Galactic disk. Abundances for these late type stars are estimated via narrowband indices that measure the strength of the TiO and CaH bands in their spectra. Our results show that the average abundance in the Galactic disk remains close to solar even at heights of more than 2 kpc above the Plane.Comment: to appear in PASP; 17 pages, including 7 embedded, postscript figures and 1 embedded table; uses AAS LaTeX style files (not included); also available at http://astro.caltech.edu/~map/map.bibliography.htm

    Dissecting magnetar variability with Bayesian hierarchical models

    Get PDF
    Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behaviour, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favoured models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here, we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture aftershocks. Using Markov Chain Monte Carlo (MCMC) sampling augmented with reversible jumps between models with different numbers of parameters, we characterise the posterior distributions of the model parameters and the number of components per burst. We relate these model parameters to physical quantities in the system, and show for the first time that the variability within a burst does not conform to predictions from ideas of self-organised criticality. We also examine how well the properties of the spikes fit the predictions of simplified cascade models for the different trigger mechanisms.Comment: accepted for publication in The Astrophysical Journal; code available at https://bitbucket.org/dhuppenkothen/magnetron, data products at http://figshare.com/articles/SGR_J1550_5418_magnetron_data/129242

    Pattern Formation on Trees

    Full text link
    Networks having the geometry and the connectivity of trees are considered as the spatial support of spatiotemporal dynamical processes. A tree is characterized by two parameters: its ramification and its depth. The local dynamics at the nodes of a tree is described by a nonlinear map, given rise to a coupled map lattice system. The coupling is expressed by a matrix whose eigenvectors constitute a basis on which spatial patterns on trees can be expressed by linear combination. The spectrum of eigenvalues of the coupling matrix exhibit a nonuniform distribution which manifest itself in the bifurcation structure of the spatially synchronized modes. These models may describe reaction-diffusion processes and several other phenomena occurring on heterogeneous media with hierarchical structure.Comment: Submitted to Phys. Rev. E, 15 pages, 9 fig

    Globular Clusters in Dense Clusters of Galaxies

    Get PDF
    Deep imaging data from the Keck II telescope are employed to study the globular cluster (GC) populations in the cores of six rich Abell clusters. The sample includes A754, A1644, A2124, A2147, A2151, and A2152, and spans the redshift range z = 0.035-0.066. The clusters also range in morphology from spiral-rich, irregular systems to centrally concentrated cD clusters rich in early-type galaxies. Globular cluster specific frequencies S_N and luminosity function dispersions are measured for a total of 9 galaxies in six central fields. The measured values of S_N for the six brightest cluster galaxies (BCGs) are all higher than typical values for giant ellipticals, in accord with the known S_N-density correlations. The three non-BCGs analyzed also have elevated values of S_N, confirming that central location is a primary factor. The number of GCs per unit mass for these fields are consistent with those found in an earlier sample, giving further evidence that GC number scales with mass and that the S_N variations are due to a deficit of halo light, i.e., S_N reflects mass-to-light ratio. The discussion builds on an earlier suggestion that the GCs (both metal rich and metal poor) around the central cluster galaxies were assembled at early times, and that star formation halted prematurely in the central galaxies at the epoch of cluster collapse. This is consistent with recent simulations of BCG/cluster formation. The subsequent addition of luminous material through cluster dynamical evolution can cause S_N to decrease, and we may be seeing the first evidence of this. Finally, the GC luminosity function measurements are used to constrain the relative distances of the three clusters that make up the Hercules supercluster.Comment: Uses emulateapj.sty (included); 17 pages with 9 included PostScript figures. Figures 1-6 are separate GIF images (so 15 figures total) available from http://astro.caltech.edu/~jpb/clusters -- the full PostScript version of the paper (20 pages; 2.2 Mb compressed) incorporating Figures 1-6 can also be grabbed from this URL. Accepted for publication in A

    Strain balancing of MOVPE InAs/GaAs quantum dots using GaAs0.8P0.2

    Get PDF
    MOVPE growth of stacked InAs/ GaAs QDs with and without GaAs 0.8 P 0.2 strain balancing layers has been studied. The GaAsP layers reduce the accumulated strain whilst maintaining the electrical characteristics. This should enable closer stacking of QD layers leading to higher gain and improved laser performance

    Estimating fixed-frame galaxy magnitudes in the Sloan Digital Sky Survey

    Get PDF
    Broadband measurements of flux for galaxies at different redshifts measure different regions of the rest-frame galaxy spectrum. Certain astronomical questions, such as the evolution of the luminosity function of galaxies, require transforming these inherently redshift-dependent magnitudes into redshift-independent quantities. To prepare to address these astronomical questions, investigated in detail in subsequent papers, we fit spectral energy distributions (SEDs) to broadband photometric observations in the context of the optical observations of the Sloan Digital Sky Survey (SDSS). Linear combinations of four spectral templates can reproduce the five SDSS magnitudes of all galaxies to the precision of the photometry. Expressed in the appropriate coordinate system, the locus of the coefficients multiplying the templates is planar and, in fact, nearly linear. The resulting reconstructed SEDs can be used to recover fixed-frame magnitudes over a range of redshifts. This process yields consistent results in the sense that, within each sample, the intrinsic colors of similar type galaxies are nearly constant with redshift. We compare our results with simpler interpolation methods and galaxy spectrophotometry from the SDSS. The software that generates these results is publicly available and easily adapted to handle a wide range of galaxy observations

    The synthesis and structure of an n-terminal dodecanoic acid conjugate of a-conotoxin MII

    Get PDF
    The alpha-conotoxin MII is a 16 amino acid long peptide toxin isolated from the marine snail, Conus magus. This toxin has been found to be a highly selective and potent inhibitor of neuronal nicotinic acetylcholine receptors of the subtype alpha3beta2. To improve the bioavailability of this peptide, we have coupled to the N-terminus of conotoxin MII, 2-amino-D,L-dodecanoic acid (Laa) creating a lipidic linear peptide which was then successfully oxidised to produce the correctly folded conotoxin MII construct

    Strain Balancing of Metal-Organic Vapour Phase Epitaxy InAs/GaAs Quantum Dot Lasers

    Get PDF
    Incorporation of a GaAs0.8P0.2 layer allows strain balancing to be achieved in self-assembled InAs/GaAs quantum dots (QDs) grown by metal organic vapor phase epitaxy. Tuneable wavelength and high density are obtained through growth parameter optimization, with emission at 1.27 ÎĽm and QD layer density 3 Ă— 10 10 cm-2. Strain balancing allows close vertical stacking (30 nm) of the QD layers, giving the potential for increased optical gain. Modeling and device characterization indicates minimal degradation in the optical and electrical characteristics unless the phosphorus percentage is increased above 20%. Laser structures are fabricated with a layer separation of 30 nm, demonstrating low temperature lasing with a threshold current density of 100 A/cm2 at 130 K without any facet coating

    Antiresonance and Localization in Quantum Dynamics

    Full text link
    The phenomenon of quantum antiresonance (QAR), i.e., exactly periodic recurrences in quantum dynamics, is studied in a large class of nonintegrable systems, the modulated kicked rotors (MKRs). It is shown that asymptotic exponential localization generally occurs for η\eta (a scaled ℏ\hbar) in the infinitesimal vicinity of QAR points η0\eta_0. The localization length ξ0\xi_0 is determined from the analytical properties of the kicking potential. This ``QAR-localization" is associated in some cases with an integrable limit of the corresponding classical systems. The MKR dynamical problem is mapped into pseudorandom tight-binding models, exhibiting dynamical localization (DL). By considering exactly-solvable cases, numerical evidence is given that QAR-localization is an excellent approximation to DL sufficiently close to QAR. The transition from QAR-localization to DL in a semiclassical regime, as η\eta is varied, is studied. It is shown that this transition takes place via a gradual reduction of the influence of the analyticity of the potential on the analyticity of the eigenstates, as the level of chaos is increased.Comment: To appear in Physical Review E. 51 pre-print pages + 9 postscript figure
    • …
    corecore