22 research outputs found

    Understanding Commuter Patterns and Behavior: An Analysis to Recommend Policies Aimed at Reducing Vehicle Use

    Get PDF
    This study focused on the use of single occupancy vehicles by employee and student commuters at the University at Albany. The team conducted a review of the existing options for alternative transportation, developed GIS maps of commuting patterns, investigated the on-time performance of mass transit and created a survey to examine perceptions and barriers to using alternative transportation. The report includes a handbook for conducting a similar analysis at other institutions

    Case Study: University at Albany Develops a Guide to Examine Commuting Behavior and Patterns

    Get PDF
    The University at Albany conducted an examination of campus commuting patterns and behaviors over an eighteen month period. The components included a review of existing options, the development of GIS maps indicating origin points of commutes, a survey of campus perceptions of barriers to using alternative transportation and on-time tracking of mass transit offerings. The study revealed that the success of alternative transportation is hindered by limitations in bus routes and frequency in scheduling, the need for commuters to make additional trips outside their commute route and a distrust of bus reliability

    Chitin metabolism in insects: chitin synthases and beta-N-acetylglucosaminidases

    Get PDF
    Doctor of PhilosophyDepartment of BiochemistryKarl J. KramerSubbarat MuthukrishnanChitin, a linear homopolymer of beta-1,4-linked N-acetylglucosamine, is the second most abundant biopolymer next to cellulose. It is the major structural polysaccharide in the insect’s exoskeleton and gut lining. An extensive study of two of the major genes encoding enzymes involved in chitin metabolism, chitin synthases (CHSs) and beta-N-acetylglucosaminidases (NAGs), was undertaken. CHS genes from the tobacco hornworm, Manduca sexta, and NAG genes from the red flour beetle, Tribolium castaneum, were identified and characterized. In general, chitin deposition occurs in two major extracellular structures of insects, the cuticle that overlays the epidermis, and the peritrophic membrane (PM) that lines the midgut. Only two CHS genes were identified in M. sexta using Southern blot analysis. Extensive expression studies of both M. sexta CHS genes, MsCHS1 and MsCHS2, suggest a strict functional specialization of these two genes for the synthesis of epidermal and PM-associated chitin, respectively. Furthermore, two alternatively spliced transcripts of MsCHS1, MsCHS1a and MsCHS1b, were identified. Analysis of the levels of these transcripts in different tissues and stages of development indicated that the MsCHS1a transcript predominates in the integument during the feeding and pupal stages, whereas the MsCHS1b transcript is more abundantly present in the tracheae, foregut, and hindgut during all developmental stages tested. Four genes encoding putative NAGs (TcNAG1, TcNAG2, TcNAG3, and TcNAG4) were identified by searching the Tribolium genomic database. The full-length cDNAs for all four NAGs were cloned and sequenced, and the exon-intron organizations were determined. Studies on developmental expression patterns of each gene indicated that they are expressed during most developmental stages with TcNAG1 being the predominant one. The function of each NAG was assessed by down regulating the level of each transcript at various developmental stages using RNA interference. Selective knock down of each transcript, without significant reduction in the expression levels of the other NAG transcripts, was verified and the resulting phenotypes were documented. Knockdown of TcNAG1 interrupted larval-larval, larval-pupal, and pupal-adult molting, and the insects were unable to completely shed their old cuticles

    Positive allosteric modulators of nonbenzodiazepine Îł-aminobutyric acidA receptor subtypes for the treatment of chronic pain

    No full text
    Chronic neuropathic pain may be caused, in part, by loss of inhibition in spinal pain processing pathways due to attenuation of local GABAergic tone. Nociception and nocifensive behaviors are reduced after enhancement of tonically activated extrasynaptic GABAAR-mediated currents by agonist ligands for δ subunit-containing GABAARs. However, typical ligands that target δ subunit-containing GABAARs are limited due to sedative effects at higher doses. We used the spinal nerve ligation (SNL) and gp120 models of experimental neuropathic pain to evaluate compound 2-261, a nonbenzodiazepine site positive allosteric modulator of α4β3δ GABAARs optimized to be nonsedative by selective activation of β2/3-subunit-containing GABAARs over receptor subtypes incorporating β1 subunits. Similar levels of 2-261 were detected in the brain and plasma after intraperitoneal administration. Although systemic 2-261 did not alter sensory thresholds in sham-operated animals, it significantly reversed SNL-induced thermal and tactile hypersensitivity in a GABAAR-dependent fashion. Intrathecal 2-261 produced conditioned place preference and elevated dopamine levels in the nucleus accumbens of nerve-injured, but not sham-operated, rats. In addition, systemic pretreatment with 2-261 blocked conditioned place preference from spinal clonidine in SNL rats. Moreover, 2-261 reversed thermal hyperalgesia and partially reversed tactile allodynia in the gp120 model of HIV-related neuropathic pain. The effects of 2-261 likely required interaction with the α4β3δ GABAAR because 2-301, a close structural analog of 2-261 with limited extrasynaptic receptor efficacy, was not active. Thus, 2-261 may produce pain relief with diminished side effects through selective modulation of β2/3-subunit-containing extrasynaptic GABAARs

    Positive allosteric modulation of the α7 nicotinic acetylcholine receptor as a treatment for cognitive deficits after traumatic brain injury.

    Get PDF
    Cognitive impairments are a common consequence of traumatic brain injury (TBI). The hippocampus is a subcortical structure that plays a key role in the formation of declarative memories and is highly vulnerable to TBI. The α7 nicotinic acetylcholine receptor (nAChR) is highly expressed in the hippocampus and reduced expression and function of this receptor are linked with cognitive impairments in Alzheimer's disease and schizophrenia. Positive allosteric modulation of α7 nAChRs with AVL-3288 enhances receptor currents and improves cognitive functioning in naïve animals and healthy human subjects. Therefore, we hypothesized that targeting the α7 nAChR with the positive allosteric modulator AVL-3288 would enhance cognitive functioning in the chronic recovery period of TBI. To test this hypothesis, adult male Sprague Dawley rats received moderate parasagittal fluid-percussion brain injury or sham surgery. At 3 months after recovery, animals were treated with vehicle or AVL-3288 at 30 min prior to cue and contextual fear conditioning and the water maze task. Treatment of TBI animals with AVL-3288 rescued learning and memory deficits in water maze retention and working memory. AVL-3288 treatment also improved cue and contextual fear memory when tested at 24 hr and 1 month after training, when TBI animals were treated acutely just during fear conditioning at 3 months post-TBI. Hippocampal atrophy but not cortical atrophy was reduced with AVL-3288 treatment in the chronic recovery phase of TBI. AVL-3288 application to acute hippocampal slices from animals at 3 months after TBI rescued basal synaptic transmission deficits and long-term potentiation (LTP) in area CA1. Our results demonstrate that AVL-3288 improves hippocampal synaptic plasticity, and learning and memory performance after TBI in the chronic recovery period. Enhancing cholinergic transmission through positive allosteric modulation of the α7 nAChR may be a novel therapeutic to improve cognition after TBI
    corecore