41 research outputs found
Characterizing South American Mesoscale Convective Complexes Using Isotope Hydrology
Mesoscale convective complexes (MCCs) over subtropical South America contribute an average annual volume of precipitation equal to approximately seven km3 and occur with an average regularity in the region, with more than 30 per warm season. Isotopic characteristics of precipitation, such as δ2H and δ18O values, provide information that can be used to identify unique processes and sources related to precipitation events. The largest database of isotope characteristics of precipitation within the region is the Global Network of Isotopes in Precipitation (GNIP), which provides varying temporal resolution data from stations around the world, including subtropical South America.
Using this database, isotope characteristics of precipitation samples within the study area of Brazil were examined to identify patterns in storm characteristics, the isotope characteristics in MCC events, and to assess the use of event (daily) resolution data for storm events that lasted 14 hours, on average. This research resulted in Local Meteoric Water Lines (LMWL) that describe the isotopic composition of precipitation and rivers at various points throughout the year and found precipitation within the study region much closer to the Global Meteoric Water Line (GMWL) than river water. While event (daily) resolution is useful, a greater number of samples at higher-resolution would provide better descriptions for specific storm events, such as MCCs, as well as to differentiate between MCC and non-MCC events more effectively. Differences in source waters and processes were evident in the data, meaning future research at higher resolutions could benefit from identifying the contribution of each source and process to any distinct MCC event in the region
JSC-Rocknest: a Large-Scale Mojave Mars Simulant (MMS) Based Soil Simulant for In-Situ Resource Utilization Water-Extraction Studies
The Johnson Space Center Rocknest (JSC-RN) simulant was developed in response to a need by NASA's Advanced Exploration Systems (AES) In Situ Resource Utilization (ISRU) project for a simulant to be used in component and system testing for water extraction from Mars regolith. JSC-RN was de-signed to be chemically and mineralogically similar to material from the aeolian sand shadow named Rocknest in Gale Crater, particularly the 1-3 weight percentage water release as measured by the Sample Analysis at Mars (SAM) instrument. Rocknest material is a proxy for average martian soils, which are unconsolidated and could be easily scooped by rovers or landers in order to extract water. One way in which water can be extracted from aeolian material is through heating, where adsorbed and structural water is thermally removed from minerals. The water can then be condensed and used as drinking water or split and used as propellant for spacecraft or as a source of breathable O2. As such, it was essential that JSC-RN contained evolved gas profiles, especially low temperature water (less than 400 degrees Centigrade), that mimicked what is observed in martian soils. Because many of these ISRU tests require hundreds of kilograms of Mars soil simulant, it was essential that JSC-RN be cost-effective and based on com-ponents that could be purchased commercially (i.e., not synthesized in the lab). Here, we describe the JSC-RN martian soil simulant, which is ideal for large-scale production and use in ISRU water extraction studies
Aqueous Alteration of Smectite in Acid-Sulfate Fluids: Implications for Clay Mineralogy at Gale Crater
The Chemistry and Mineralogy (CheMin) instrument on the Mars Science Laboratory (MSL) Rover, Curiosity, analyzes samples collected in Gale Crater, Mars using X-ray diffraction (XRD). One site of interest is the Oudam drill sample that CheMin analyzed on sols 1362, 1365, and 1369, which contains ~3 wt% phyllosilicate. XRD analysis of this phyllosilicate suggests a 2:1 Fe3+-smectite, akin to nontronite
Can Silicon-Smelting Contribute to the Low O/Si Ratio on the Surface of Mercury?
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft collected data that provided important insights into the structure, chemical makeup, and compositional diversity of Mercury. Among the many discoveries about Mercury made by MESSENGER, several surprising compositional characteristics of the surface were observed. These discoveries include elevated sulfur abundances (up to 4 wt.%), elevated abundances of graphitic carbon (0-4.1 wt.% across the surface with an additional 1-3 wt.% graphite above the global average in low reflectance materials), low iron abundances (less than 2 wt.%), and low oxygen abundances (O/Si weight ratio of 1.20+/-0.1). These exotic characteristics likely have important implications for the thermochemical evolution of Mercury and point to a planet that formed under highly reducing conditions. In the present study, we focus specifically on the low O/Si ratio of Mercury, which is anomalous compared to all other planetary materials. A recent study that considered the geochemical implications of the low O/Si ratio reported that 12-20% of the surface materials on Mercury are composed of Si-rich, Si-Fe alloys. They further postulated that the origin of the metal is best explained by a combination of space weathering and graphite-induced smelting that was facilitated by interaction of graphite with boninitic and komatiitic parental liquids. The goal of the present study is to assess the plausibility of smelting on Mercury through experiments run at the conditions that McCubbin et al. indicated would be favorable for Si-smelting
An Expanded Stratigraphic Record of the Devonian-Carboniferous Boundary Hangenberg Biogeochemical Event from Southeast Iowa (U.S.A.)
The Devonian-Carboniferous boundary in the type area of the Mississippian subsystem (tri-state area of Iowa, Illinois, and Missouri) has been historically difficult to identify. Many of the localities contain similar lithologies and stratigraphic successions, but chronostratigraphic correlation of seemingly identical lithologies can vary greatly in this interval and frequently this has led to miscorrelation. In particular, the similar lithofacies that comprise the McCraney Formation and Louisiana Formation have been a source of stratigraphic confusion for over 100 years. To investigate the Devonian-Carboniferous boundary interval in the Mississippian type area we selected two localities in southeastern Iowa, the H-28 core from Lee County outside of Keokuk, Iowa, and the Starr’s Cave outcrop located near Burlington, Iowa. In total, 62 conodont samples and 299 carbonate carbon isotope samples were processed for this study and recorded the Hangenberg positive carbon isotope excursion and 25 conodont species, including a diverse assemblage of siphonodellids. The Hangenberg excursion is recorded in over 20 m of strata in southeast Iowa, making this one of the thickest stratigraphic records of this important biogeochemical event yet recovered, and helps to define more clearly the position of the base of the Carboniferous System in the region. These results show that the “McCraney” Fm. at the Starr’s Cave outcrop and the coeval carbonate unit in the H-28 core are both the Louisiana Formation, and calls into question the use of the name McCraney throughout the State of Iowa
Constraints on the Mineralogy of Gale Crater Mudstones from MSL SAM Evolved Water
The Sample Analysis at Mars (SAM) and Chemistry and Mineralogy (CheMin) instruments on the Mars Science Laboratory (MSL) have analysed more than 150 micron fines from 14 sites at Gale Crater. Here we focus on the mudstone samples. Two were drilled from sites John Klein (JK) and Cumberland (CB) in the Sheepbed mudstone. Six were drilled from Murray Formation mudstone: Confidence Hills (CH), Mojave (MJ), Telegraph Peak (TP), Buckskin (BK), Oudam (OU), Marimba (MB). SAM's evolved gas analysis mass spectrometry (EGA-MS) detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments. The identity and evolution temperature of evolved gases can support CheMin mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with X-ray diffraction (e.g., amorphous phases). Here we will focus on SAM H2O data and comparisons to SAM-like analyses of key reference materials
Perchlorate on Mars - Overview and Implications
Perchlorate was first detected on Mars by the Wet Chemistry Laboratory (WCL) instrument on the Phoenix lander at a concentration of ~0.5 wt% in northern plains soils. Since that initial detection, perchlorate (and likely chlorate) have been detected on Mars by both surface and orbital instruments. Perchlorate (ClO4-) is an oxidized chlorine compound and salts of perchlorate are kinetically stable (though very reactive at high temperature), very soluble, deliquescent, and have low eutectic temperature (which decreases the temperature for stable liquids on Mars). Chlorate (ClO3-) salts are similar, though they are less kinetically stable than perchlorates. Because many of the analytical signatures of perchlorate and chlorate are similar to the instruments we have used on Mars, we cannot always determine which species is present, so we will use the more generic term oxychlorine when referring to perchlorate and/or chlorate
Evolved Gas Analyses of Mudstones from the Vera Rubin Ridge
The Sample Analysis at Mars (SAM) instrument suite on the Mars Science Laboratory (MSL) rover has been essential in understanding volatile-bearing phases in Gale Crater materials. SAMs evolved gas analysis mass spectrometry (EGA-MS) has detected H2O, CO2, O2, H2, SO2, H2S, HCl, NO, and other trace gases, including organic fragments, in many samples. The identity and evolution temperature of evolved gases can support CheMin instrument mineral detection and place constraints on trace volatile-bearing phases or phases difficult to characterize with X-ray diffraction (e.g., amorphous phases). For the past ~500 sols, MSL has been exploring the Vera Rubin Ridge (VRR), which exhibits a striking hematite signature in orbital remote sensing data, in order to understand the depositional and diagenetic history recorded in the rocks and how it relates to the underlying Murray Formation. Four rock samples were drilled, one from the Blunts Point Member (Duluth, DU), one from the Pettegrrove Point Member (Stoer, ST), and two from the Jura Member. The Jura Member displays differences in color, summarized as grey and red, and a key goal was to constrain the cause of this color difference and the associated implications for depositional or post-depositional conditions. To investigate, a grey (Highfield, HF) and a red (Rock Hall, RH) Jura sample were drilled. Here we will give an overview of results from SAM EGA-MS analyses of VRR materials, with some comparisons to analyses of samples of the underlying Murray
Oxychlorine Detection in Gale Crater, Mars and Implications for Past Environmental Conditions
The Sample Analysis at Mars (SAM) instrument on the Mars Science Laboratory (MSL) rover Curiosity has analyzed 3 scooped samples and 15 drilled samples since landing in 2012. Oxychlorine compounds (perchlorate/chlorate) were detected in the first 9 drilled samples but have not been detected in the last 6, starting with the Oudam sample in the Hartmanns Valley member of the Murray formation (Table 1). Scooped samples have all contained detectable oxychlorine. These results suggest that oxychlorine formation and preservation spans the geologic record on Mars but has not been uniform spatially or temporally
Resilient emotionality and molecular compensation in mice lacking the oligodendrocyte-specific gene Cnp1
Altered oligodendrocyte structure and function is implicated in major psychiatric illnesses, including low cell number and reduced oligodendrocyte-specific gene expression in major depressive disorder (MDD). These features are also observed in the unpredictable chronic mild stress (UCMS) rodent model of the illness, suggesting that they are consequential to environmental precipitants; however, whether oligodendrocyte changes contribute causally to low emotionality is unknown. Focusing on 2′-3′-cyclic nucleotide 3′-phosphodiesterase (Cnp1), a crucial component of axoglial communication dysregulated in the amygdala of MDD subjects and UCMS-exposed mice, we show that altered oligodendrocyte integrity can have an unexpected functional role in affect regulation. Mice lacking Cnp1 (knockout, KO) displayed decreased anxiety- and depressive-like symptoms (i.e., low emotionality) compared with wild-type animals, a phenotypic difference that increased with age (3–9 months). This phenotype was accompanied by increased motor activity, but was evident before neurodegenerative-associated motor coordination deficits (⩽9–12 months). Notably, Cnp1KO mice were less vulnerable to developing a depressive-like syndrome after either UCMS or chronic corticosterone exposure. Cnp1KO mice also displayed reduced fear expression during extinction, despite normal amygdala c-Fos induction after acute stress, together implicating dysfunction of an amygdala-related neural network, and consistent with proposed mechanisms for stress resiliency. However, the Cnp1KO behavioral phenotype was also accompanied by massive upregulation of oligodendrocyte- and immune-related genes in the basolateral amygdala, suggesting an attempt at functional compensation. Together, we demonstrate that the lack of oligodendrocyte-specific Cnp1 leads to resilient emotionality. However, combined with substantial molecular changes and late-onset neurodegeneration, these results suggest the low Cnp1 seen in MDD may cause unsustainable and maladaptive molecular compensations contributing to the disease pathophysiology