4,234 research outputs found

    The rodent research animal holding facility as a barrier to environmental contamination

    Get PDF
    The rodent Research Animal Holding Facility (RAHF), developed by NASA Ames Research Center (ARC) to separately house rodents in a Spacelab, was verified as a barrier to environmental contaminants during a 12-day biocompatibility test. Environmental contaminants considered were solid particulates, microorganisms, ammonia, and typical animal odors. The 12-day test conducted in August 1988 was designed to verify that the rodent RAHF system would adequately support and maintain animal specimens during normal system operations. Additional objectives of this test were to demonstrate that: (1) the system would capture typical particulate debris produced by the animal; (2) microorganisms would be contained; and (3) the passage of animal odors was adequately controlled. In addition, the amount of carbon dioxide exhausted by the RAHF system was to be quantified. Of primary importance during the test was the demonstration that the RAHF would contain particles greater than 150 micrometers. This was verified after analyzing collection plates placed under exhaust air ducts and rodent cages during cage maintenance operations, e.g., waste tray and feeder changeouts. Microbiological testing identified no additional organisms in the test environment that could be traced to the RAHF. Odor containment was demonstrated to be less than barely detectable. Ammonia could not be detected in the exhaust air from the RAHF system. Carbon dioxide levels were verified to be less than 0.35 percent

    Dynamic Non-Linear Model of an Urban Situation with Probabilistic Type Causal Models

    Get PDF
    Electrical Engineerin

    Creating the Future of Health

    Get PDF
    Creating the Future of Health is the fascinating story of the first fifty years of the Cumming School of Medicine at the University of Calgary. Founded on the recommendation of the Royal Commission on Health Services in 1964 the Cumming School has, from the very beginning, focused on innovation and excellence in health education. With a pioneering focus on novel, responsive and systems-based approaches, it was one of the first faculties to pilot multi-year training programs in family medicine and remains one of only two three-year medical schools in North America. Drawing on interviews with key players and extensive research into documents and primary material, Creating the Future of Health traces the history of the school through the leadership of its Deans. This is a story of perseverance through fiscal turbulence, sweeping changes to health care and health care education, and changing ideas of what health services are and what they should do. It is a story of triumph, of innovation, and of the tenacious spirit that thrives to this day at the Cumming School of Medicine

    Mean Atlantic Meridional Overturning Circulation Across 26.5° N From Eddy-Resolving Simulations Compared to Observations

    Get PDF
    Observations along 26.5 degrees N are used to examine the time mean structure of the Atlantic meridional overturning circulation (AMOC) in eddy-resolving simulations with the Hybrid Coordinate Ocean Model (HYCOM). The model results yield a 5 year mean AMOC transport of 18.2 Sv, compared to 18.4 Sv based on data. The modeled northward limb of the AMOC has a vertical structure similar to observations. The southward limb is shallower than observed but deeper than other ocean general circulation models and includes a secondary transport maximum near 4000 m corresponding to Nordic Seas Overflow Water. The modeled flow through the Florida Strait and the deep western boundary current (DWBC) east of Abaco, Bahamas, are also approximately consistent with observations. The model results are used to clarify the sources of the northward AMOC transport and to explore the circulation pattern of the southward transport in the western subtropical North Atlantic in the range 18-33 degrees N. About 14.1 Sv of the modeled northward AMOC transport is through the Florida Strait and the remainder through the mid-ocean, primarily in the Ekman layer, but also below 600 m. The modeled AMOC transport is about 2/3 surface water and 1/3 Antarctic Intermediate Water with no contribution from the thermocline water in between. In the western subtropical North Atlantic the model results depict a complicated deep circulation pattern, associated with the complex bathymetry. The DWBC flows southward then eastward in both the upper and lower North Atlantic Deep Water (NADW) layers but with different offshore recirculation pathways, and there exists a second, more northern branch of eastward flow in the lower NADW layer
    corecore