555 research outputs found

    An Experimental Study of Micron-scale Droplet Aerosols Produced via Ultrasonic Atomization

    Get PDF
    In the last 10 years, laser-driven fusion experiments performed on atomic clusters of deuterium have shown a surprisingly high neutron yield per joule of input laser energy. Results indicate that the optimal cluster size for maximizing fusion events should be in the 0.01–μm diameter range, but an appropriate source of droplets of this size does not exist. In an attempt to meet this need, we use ultrasonic atomization to generate micron-scale droplet aerosols of high average density, and we have developed and refined a reliable droplet sizing technique based on Mie scattering. Harmonic excitation of the fluid in the MHz range yields an aerosol of droplets with diameters of a few microns. The droplet diameter distribution is well-peaked and the relationship between average droplet size and forcing frequency follows an inviscid scaling law, predictable by dimensional analysis and consistent with the linear theory for Faraday excitation of an infinitely deep fluid

    Using Ultrasonic Atomization to Produce an Aerosol of Micron-scale Particles

    Get PDF
    A device that uses ultrasonic atomization of a liquid to produce an aerosol of micron-scale droplets is described. This device represents a new approach to producing targets relevant to laser-driven fusion studies, and to rare studies of nonlinear optics in which wavelength-scale targets are irradiated. The device has also made possible tests of fluid dynamics models in a novel phase space. The distribution of droplet sizes produced by the device and the threshold power required for droplet production are shown to follow scaling laws predicted by fluid dynamics

    The African Women's Protocol: Bringing Attention to Reproductive Rights and the MDGs

    Get PDF
    Andrew Gibbs and colleagues discuss the African Women's Protocol, a framework for ensuring reproductive rights are supported throughout the continent and for supporting interventions to improve women's reproductive health, including the MDGs

    A Strategy for Finding Near Earth Objects with the SDSS Telescope

    Full text link
    We present a detailed observational strategy for finding Near Earth Objects (NEOs) with the Sloan Digital Sky Survey (SDSS) telescope. We investigate strategies in normal, unbinned mode as well as binning the CCDs 2x2 or 3x3, which affects the sky coverage rate and the limiting apparent magnitude. We present results from 1 month, 3 year and 10 year simulations of such surveys. For each cadence and binning mode, we evaluate the possibility of achieving the Spaceguard goal of detecting 90% of 1 km NEOs (absolute magnitude H <= 18 for an albedo of 0.1). We find that an unbinned survey is most effective at detecting H <= 20 NEOs in our sample. However, a 3x3 binned survey reaches the Spaceguard Goal after only seven years of operation. As the proposed large survey telescopes (PanStarss; LSST) are at least 5-10 years from operation, an SDSS NEO survey could make a significant contribution to the detection and photometric characterization of the NEO population.Comment: Accepted by AJ -- 12 pages, 11 figure

    Blood Supply to the Human Spinal Cord. II. Imaging and Pathology

    Get PDF
    The blood supply of the spinal cord is a complex system based on multilevel sources and anastomoses. Diseases often affect this vascular supply and imaging has been developed that better investigates these structures. The authors review the literature regarding pathology and imaging modalities for the blood supply of the spinal cord. Knowledge of the disease processes and imaging modalities used to investigate these arterial lesions of the spinal cord will assist the clinician when treating patients with spinal cord lesions

    Particle Stirring in Turbulent Gas Disks: Including Orbital Oscillations

    Full text link
    We describe the diffusion and random velocities of solid particles due to stochastic forcing by turbulent gas. We include the orbital dynamics of Keplerian disks, both in-plane epicycles and vertical oscillations. We obtain a new result for the diffusion of solids. The Schmidt number (ratio of gas to particle diffusivity) is Sc = 1 + (Omega t_stop)^2, in terms of the particle stopping time, t_stop, and the orbital frequency, Omega. The standard result, Sc = 1 + t_stop/t_eddy, in terms of the eddy turnover time, t_eddy, is shown to be incorrect. The main difference is that Sc rises quadratically, not linearly, with stopping time. Consequently, particles larger than ~ 10 cm in protoplanetary disks will suffer less radial diffusion and will settle closer to the midplane. Such a layer of boulders would be more prone to gravitational collapse. Our predictions of RMS speeds, vertical scale height and diffusion coefficients will help interpret numerical simulations. We confirm previous results for the vertical stirring of particles (scale heights and random velocities), and add a correction for arbitrary ratios of eddy to orbital times. The particle layer becomes thinner for t_eddy > 1/Omega, with the strength of turbulent diffusion held fixed. We use two analytic techniques -- the Hinze-Tchen formalism and the Fokker-Planck equation with velocity diffusion -- with identical results when the regimes of validity overlap. We include simple physical arguments for the scaling of our results.Comment: 17 pages, 7 figures, 2 tables, accepted to Icaru

    Far Ultraviolet Morphology of Star Forming Filaments in Cool Core Brightest Cluster Galaxies

    Get PDF
    We present a multiwavelength morphological analysis of star forming clouds and filaments in the central (<50 kpc) regions of 16 low redshift (z5z 5 \Msol) stars reveals filamentary and clumpy morphologies, which we quantify by means of structural indices. The FUV data are compared with X-ray, Lyα\alpha, narrowband Hα\alpha, broadband optical/IR, and radio maps, providing a high spatial resolution atlas of star formation locales relative to the ambient hot (1078\sim10^{7-8} K) and warm ionised (104\sim 10^4 K) gas phases, as well as the old stellar population and radio-bright AGN outflows. Nearly half of the sample possesses kpc-scale filaments that, in projection, extend toward and around radio lobes and/or X-ray cavities. These filaments may have been uplifted by the propagating jet or buoyant X-ray bubble, or may have formed {\it in situ} by cloud collapse at the interface of a radio lobe or rapid cooling in a cavity's compressed shell. The morphological diversity of nearly the entire FUV sample is reproduced by recent hydrodynamical simulations in which the AGN powers a self-regulating rain of thermally unstable star forming clouds that precipitate from the hot atmosphere. In this model, precipitation triggers where the cooling-to- freefall time ratio is tcool/tff10t_{\mathrm{cool}}/t_{\mathrm{ff}}\sim 10. This condition is roughly met at the maxmial projected FUV radius for more than half of our sample, and clustering about this ratio is stronger for sources with higher star formation rates

    Gravitational Radiation From Cosmological Turbulence

    Get PDF
    An injection of energy into the early Universe on a given characteristic length scale will result in turbulent motions of the primordial plasma. We calculate the stochastic background of gravitational radiation arising from a period of cosmological turbulence, using a simple model of isotropic Kolmogoroff turbulence produced in a cosmological phase transition. We also derive the gravitational radiation generated by magnetic fields arising from a dynamo operating during the period of turbulence. The resulting gravitational radiation background has a maximum amplitude comparable to the radiation background from the collision of bubbles in a first-order phase transition, but at a lower frequency, while the radiation from the induced magnetic fields is always subdominant to that from the turbulence itself. We briefly discuss the detectability of such a signal.Comment: 20 pages. Corrections for an errant factor of 2 in all the gravity wave characteristic amplitudes. Accepted for publication in Phys. Rev.
    corecore