17 research outputs found

    Massively Parallel Sequencing of Gene Fusion-Associated Sarcomas

    No full text

    Different patterns of clonal evolution among different sarcoma subtypes followed for up to 25 years

    No full text
    To compare clonal evolution in tumors arising through different mechanisms, we selected three types of sarcoma-amplicon-driven well-differentiated liposarcoma (WDLS), gene fusion-driven myxoid liposarcoma (MLS), and sarcomas with complex genomes (CXS)-and assessed the dynamics of chromosome and nucleotide level mutations by cytogenetics, SNP array analysis and whole-exome sequencing. Here we show that the extensive single-cell variation in WDLS has minor impact on clonal key amplicons in chromosome 12. In addition, only a few of the single nucleotide variants in WDLS were present in more than one lesion, suggesting that such mutations are of little significance in tumor development. MLS displays few mutations other than the FUS-DDIT3 fusion, and the primary tumor is genetically sometimes much more complex than its relapses, whereas CXS in general shows a gradual increase of both nucleotide- and chromosome-level mutations, similar to what has been described in carcinomas

    Undifferentiated pleomorphic sarcomas with PRDM10 fusions have a distinct gene expression profile

    No full text
    Undifferentiated pleomorphic sarcoma (UPS) is a highly aggressive soft tissue tumor. A subset of UPS is characterized by a CITED2–PRDM10 or a MED12–PRDM10 gene fusion. Preliminary data suggest that these so-called PRDM10-rearranged tumors (PRT) are clinically more indolent than classical high-grade UPS, and hence important to recognize. Here, we assessed the spectrum of accompanying mutations and the gene expression profile in PRT using genomic arrays and sequencing of the genome (WGS) and transcriptome (RNA-seq). The fusion protein's function was further investigated by conditional expression of the CITED2–PRDM10 fusion in a fibroblast cell line, followed by RNA-seq and an assay for transposase-accessible chromatin (ATAC-seq). The CADM3 gene was found to be differentially up-regulated in PRT and cell lines and was also evaluated for expression at the protein level using immunohistochemistry (IHC). The genomic analyses identified few and nonrecurrent mutations in addition to the structural variants giving rise to the gene fusions, strongly indicating that the PRDM10-fusions represent the critical driver mutations. RNA-seq of tumors showed a distinct gene expression profile, separating PRT from high-grade UPS and other soft tissue tumors. CADM3 was among the genes that was consistently and highly expressed in both PRT and fibroblasts expressing CITED2-PRDM10, suggesting that it is a direct target of the PRDM10 transcription factor. This conclusion is in line with sequencing data from ATAC-seq, showing enrichment of PRDM10 binding sites, suggesting that the amino-terminal fusion partner contributes by making the DNA more accessible to PRDM10 binding

    PHF1 fusions cause distinct gene expression and chromatin accessibility profiles in ossifying fibromyxoid tumors and mesenchymal cells

    No full text
    Ossifying fibromyxoid tumor (OFMT) is a soft tissue tumor frequently displaying gene fusions, most of which affect the PHF1 gene. PHF1 encodes plant homeodomain finger protein 1, which is involved in various processes regulating gene transcription, including those orchestrated by the polycomb repressor complex 2. Here, a series of 37 OFMTs, including 18 typical, 9 atypical, and 10 malignant variants, was analyzed with regard to transcriptomic features, gene fusion and copy number status, and/or single-nucleotide variants. The effects on gene expression and chromatin accessibility of three detected fusions (EP400–PHF1, MEAF6–PHF1, and PHF1–TFE3) were further evaluated in fibroblasts. Genomic imbalances showed a progression-related pattern, with more extensive copy number changes among atypical/malignant lesions than among typical OFMTs; loss of the RB1 gene was restricted to atypical/malignant OFMTs, occurring in one-third of the cases. RNA sequencing identified fusion transcripts in >80% of the cases analyzed, including a novel CSMD1–MEAF6. The gene-expression profile of OFMT was distinct from that of other soft tissue tumors, with extensive transcriptional upregulation of genes in OFMT. These findings were largely recapitulated in gene fusion-expressing fibroblast lines, suggesting that genes involved in, e.g., Wnt signaling and/or being regulated through trimethylation of lysine 27 in histone 3 (H3K27me3) are pivotal for OFMT development. The genes showing differentially higher expression in fusion-expressing cells paralleled increased chromatin accessibility, as revealed by ATAC sequencing. Thus, the present study suggests that OFMT develops through gene fusions that have extensive epigenetic consequences

    Genetic heterogeneity in rhabdomyosarcoma revealed by SNP array analysis.

    No full text
    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and adolescents. Alveolar (ARMS) and embryonal (ERMS) histologies predominate, but rare cases are classified as spindle cell/sclerosing (SRMS). For treatment stratification, RMS is further subclassified as fusion-positive (FP-RMS) or fusion-negative (FN-RMS), depending on whether a gene fusion involving PAX3 or PAX7 is present or not. We investigated 19 cases of pediatric RMS using high resolution single-nucleotide polymorphism (SNP) array. FP-ARMS displayed, on average, more structural rearrangements than ERMS; the single FN-ARMS had a genomic profile similar to ERMS. Apart from previously known amplification (e.g., MYCN, CDK4, and MIR17HG) and deletion (e.g., NF1, CDKN2A, and CDKN2B) targets, amplification of ERBB2 and homozygous loss of ASCC3 or ODZ3 were seen. Combining SNP array with cytogenetic data revealed that most cases were polyploid, with at least one case having started as a near-haploid tumor. Further bioinformatic analysis of the SNP array data disclosed genetic heterogeneity, in the form of subclonal chromosomal imbalances, in five tumors. The outcome was worse for patients with FP-ARMS than ERMS or FN-ARMS (6/8 vs. 1/9 dead of disease), and the only children with ERMS showing intratumor diversity or with MYOD1 mutation-positive SRMS also died of disease. High resolution SNP array can be useful in evaluating genomic imbalances in pediatric RMS. © 2015 Wiley Periodicals, Inc

    Genomic and transcriptomic features of dermatofibrosarcoma protuberans : Unusual chromosomal origin of the COL1A1-PDGFB fusion gene and synergistic effects of amplified regions in tumor development

    No full text
    The dermatofibrosarcoma protuberans family of tumors (DPFT) comprises cutaneous soft tissue neoplasms associated with aberrant PDGFBR signaling, typically through a COL1A1-PDGFB fusion. The aim of the present study was to obtain a better understanding of the chromosomal origin of this fusion and to assess the spectrum of secondary mutations at the chromosome and nucleotide levels. We thus investigated 42 tumor samples from 35 patients using chromosome banding, fluorescence in situ hybridization, single nucleotide polymorphism arrays, and/or massively parallel sequencing (gene panel, whole exome and transcriptome sequencing) methods. We confirmed the age-associated differences in the origin of the COL1A1-PDGFB fusion and could show that it in most cases must arise after DNA synthesis, i.e., in the S or G2 phase of the cell cycle. Whereas there was a non-random pattern of secondary chromosomal rearrangements, single nucleotide variants seem to have little impact on tumor progression. No clear genomic differences between low-grade and high-grade DPFT were found, but the number of chromosomes and chromosomal imbalances as well as the frequency of 9p deletions all tended to be greater among the latter. Gene expression profiling of tumors with COL1A1-PDGFB fusions associated with unbalanced translocations or ring chromosomes identified several transcriptionally up-regulated genes in the amplified regions of chromosomes 17 and 22, including TBX2, PRKCA, MSI2, SOX9, SOX10, and PRAME

    FN1-EGF gene fusions are recurrent in calcifying aponeurotic fibroma

    No full text
    Calcifying aponeurotic fibroma (CAF) is a soft tissue neoplasm with a predilection for the hands and feet in children and adolescents. Its molecular basis is unknown. We used chromosome banding analysis, fluorescence in situ hybridization (FISH), mRNA sequencing (RNA-seq), RT-PCR and immunohistochemistry to characterize a series of CAFs. An insertion ins(2;4)(q35;q25q?) was identified in the index case. Fusion of the FN1 and EGF genes, mapping to the breakpoint regions on chromosomes 2 and 4, respectively, were detected by RNA-seq and confirmed by RT-PCR in the index case and two additional cases. FISH on five additional tumour identified FN1-EGF fusions in all cases. CAFs analysed by RT-PCR showed that FN1 exon 23, 27 or 42 were fused to EGF exon 17 or 19. High level expression of the entire FN1 gene in CAF suggests that strong FN1 promoter activity drives inappropriate expression of the biologically active portion of EGF which was detected immunohistochemically in 8/9 cases. The FN1-EGF fusion, which has not been observed in any other neoplasm, appears to be the main driver mutation in CAF. Although further functional studies are required to understand the exact pathogenesis of CAF, the composition of the chimera suggests an autocrine/paracrine mechanism of transformation

    Aberrant receptor tyrosine kinase signaling in lipofibromatosis : a clinicopathological and molecular genetic study of 20 cases

    No full text
    Lipofibromatosis is a rare pediatric soft tissue tumor with predilection for the hands and feet. Previously considered to represent “infantile fibromatosis”, lipofibromatosis has distinctive morphological features, with mature adipose tissue, short fascicles of bland fibroblastic cells, and lipoblast-like cells. Very little is known about the genetic underpinnings of lipofibromatosis. Prompted by our finding of the FN1-EGF gene fusion, previously shown to be a characteristic feature of calcifying aponeurotic fibroma (CAF), in a morphologically typical case of lipofibromatosis that recurred showing features of CAF, we studied a cohort of 20 cases of lipofibromatosis for this and other genetic events. The cohort was composed of 14 males and 6 females (median age 3 years; range 1 month–14 years). All primary tumors showed classical lipofibromatosis morphology. Follow-up disclosed three local recurrences, two of which contained calcifying aponeurotic fibroma-like nodular calcifications in addition to areas of classic lipofibromatosis, and no metastases. By FISH and RNA sequencing, four cases were positive for FN1-EGF and one case each showed an EGR1-GRIA1, TPR-ROS1, SPARC-PDGFRB, FN1-TGFA, EGFR-BRAF, VCL-RET, or HBEGF-RBM27 fusion. FN1-EGF was the only recurrent fusion, suggesting that some cases of “lipofibromatosis” may represent calcifying aponeurotic fibroma lacking hallmark calcifications. Several of the genes involved in fusions (BRAF, EGFR, PDGFRB, RET, and ROS1) encode receptor tyrosine kinases (RTK), or ligands to the RTK EGFR (EGF, HBEGF, TGFA), suggesting a shared deregulation of the PI3K–AKT–mTOR pathway in a large subset of lipofibromatosis cases

    RNA sequencing of sarcomas with simple karyotypes: identification and enrichment of fusion transcripts.

    No full text
    Gene fusions are neoplasia-associated mutations arising from structural chromosomal rearrangements. They have a strong impact on tumor development and constitute important diagnostic markers. Malignant soft tissue tumors (sarcomas) constitute a heterogeneous group of neoplasms with >50 distinct subtypes, each of which is rare. In addition, there is considerable morphologic overlap between sarcomas and benign lesions. Several subtypes display distinct gene fusions, serving as excellent biomarkers. The development of methods for deep sequencing of the complete transcriptome (RNA-Seq) has substantially improved the possibilities for detecting gene fusions. With the aim of identifying new gene fusions of biological and clinical relevance, eight sarcomas with simple karyotypes, ie, only one or a few structural rearrangements, were subjected to massively parallel paired-end sequencing of mRNA. Three different algorithms were used to identify fusion transcripts from RNA-Seq data. Three novel (KIAA2026-NUDT11, CCBL1-ARL1, and AFF3-PHF1) and two previously known fusions (FUS-CREB3L2 and HAS2-PLAG1) were found and could be verified by other methods. These findings show that RNA-Seq is a powerful tool for detecting gene fusions in sarcomas but also suggest that it is advisable to use more than one algorithm to analyze the output data as only two of the confirmed fusions were reported by more than one of the gene fusion detection software programs. For all of the confirmed gene fusions, at least one of the genes mapped to a chromosome band implicated by the karyotype, suggesting that sarcomas with simple karyotypes constitute an excellent resource for identifying novel gene fusions.Laboratory Investigation advance online publication, 13 April 2015; doi:10.1038/labinvest.2015.50

    Aberrant Receptor Tyrosine Kinase Signaling in Lipofibromatosis: A Clinicopathological and Molecular Genetic Study of 20 Cases

    No full text
    Lipofibromatosis is a rare pediatric soft tissue tumor with predilection for the hands and feet. Previously considered to represent infantile fibromatosis , lipofibromatosis has distinctive morphological features, with mature adipose tissue, short fascicles of bland fibroblastic cells, and lipoblast-like cells. Very little is known about the genetic underpinnings of lipofibromatosis. Prompted by our finding of the FN1-EGF gene fusion, previously shown to be a characteristic feature of calcifying aponeurotic fibroma (CAF), in a morphologically typical case of lipofibromatosis that recurred showing features of CAF, we studied a cohort of 20 cases of lipofibromatosis for this and other genetic events. The cohort was composed of 14 males and 6 females (median age 3 years; range 1 month-14 years). All primary tumors showed classical lipofibromatosis morphology. Follow-up disclosed three local recurrences, two of which contained calcifying aponeurotic fibroma-like nodular calcifications in addition to areas of classic lipofibromatosis, and no metastases. By FISH and RNA sequencing, four cases were positive for FN1-EGF and one case each showed an EGR1-GRIA1, TPR-ROS1, SPARC-PDGFRB, FN1-TGFA, EGFR-BRAF, VCL-RET, or HBEGF-RBM27 fusion. FN1-EGF was the only recurrent fusion, suggesting that some cases of lipofibromatosis may represent calcifying aponeurotic fibroma lacking hallmark calcifications. Several of the genes involved in fusions (BRAF, EGFR, PDGFRB, RET, and ROS1) encode receptor tyrosine kinases (RTK), or ligands to the RTK EGFR (EGF, HBEGF, TGFA), suggesting a shared deregulation of the PI3K-AKT-mTOR pathway in a large subset of lipofibromatosis cases
    corecore