274 research outputs found

    Caveolin-1 interacts with the chaperone complex TCP-1 and modulates its protein folding activity

    Get PDF
    Abstract.: We report that caveolin-1, one of the major structural protein of caveolae, interacts with TCP-1, a hetero-oligomeric chaperone complex present in all eukaryotic cells that contributes mainly to the folding of actin and tubulin. The caveolin-TCP-1 interaction entails the first 32 amino acids of the N-terminal segment of caveolin. Our data show that caveolin-1 expression is needed for the induction of TCP-1 actin folding function in response to insulin stimulation. Caveolin-1 phosphorylation at tyrosine residue 14 induces the dissociation of caveolin-1 from TCP-1 and activates actin folding. We show that the mechanism by which caveolin-1 modulates TCP-1 activity is indirect and involves the cytoskeleton linker filamin. Filamin is known to bind caveolin-1 and to function as a negative regulator of insulin-mediated signaling. Our data support the notion that the caveolin-filamin interaction contributes to restore insulin-mediated phosphorylation of caveolin, thus allowing the release of active TCP-

    Da filosofia e do filosofar ao seu ensino. A propósito de Ensinar Filosofia? O que dizem os filósofos

    Get PDF
    info:eu-repo/semantics/publishedVersio

    Specificity of activated human protein C

    Full text link

    The surface energy balance during foehn events at Joyce Glacier, McMurdo Dry Valleys, Antarctica

    Get PDF
    The McMurdo Dry Valleys (MDV) are a polar desert, where glacial melt is the main source of water to streams and the ecosystem. Summer air temperatures are typically close to zero, and therefore foehn events can have a large impact on the meltwater production. A 14-month record of automatic weather station (AWS) data on Joyce Glacier is used to force a 1D surface energy balance model to study the impact of foehn events on the energy balance. AWS data and output of the Antarctic Mesoscale Prediction System (AMPS) on a 1.7 km grid are used to detect foehn events at the AWS site. Foehn events at Joyce Glacier occur under the presence of cyclones over the Ross Sea. The location of Joyce Glacier on the leeward side of the Royal Society Range during these synoptic events causes foehn warming through isentropic drawdown. This mechanism differs from the foehn warming through gap flow that was earlier found for other regions in the MDV and highlights the complex interaction of synoptic flow with local topography of the MDV. Shortwave radiation is the primary control on melt at Joyce Glacier, and melt often occurs with subzero air temperatures. During foehn events, melt rates are enhanced, contributing to 23 % of the total annual melt. Foehn winds cause a switch from a diurnal stability regime in the atmospheric surface layer to a continuous energy input from sensible heat flux throughout the day. The sensible heating during foehn, through an increase in turbulent mixing resulting from gustier and warmer wind conditions, is largely compensated for by extra heat losses through sublimation. Melt rates are enhanced through an additional energy surplus from a reduced albedo during foehn.</p

    Clinical longevity of intracoronal restorations made of gold, lithium disilicate, leucite, and indirect resin composite:a systematic review and meta-analysis

    Get PDF
    OBJECTIVES: The aim of this systematic review and meta-analysis is to assess the comparative clinical success and survival of intracoronal indirect restorations using gold, lithium disilicate, leucite, and indirect composite materials.MATERIAL AND METHODS: This systematic review and meta-analysis were conducted following the Cochrane Handbook for Systematic Reviews of Interventions and PRISMA guidelines. The protocol for this study was registered in PROSPERO (registration number: CRD42021233185). A comprehensive literature search was conducted across various databases and sources, including PubMed/Medline, Embase, Cochrane Library, Web of Science, ClinicalTrials.gov, and gray literature. A total of 7826 articles were screened on title and abstract. Articles were not excluded based on the vitality of teeth, the language of the study, or the observation period. The risk difference was utilized for the analyses, and a random-effects model was applied. All analyses were conducted with a 95% confidence interval (95% CI). The calculated risk differences were derived from the combined data on restoration survival and failures obtained from each individual article. The presence of heterogeneity was assessed using the I2 statistic, and if present, the heterogeneity of the data in the articles was evaluated using the non-parametric chi-squared statistic (p &lt; 0.05).RESULTS: A total of 12 eligible studies were selected, which included 946 restorations evaluated over a minimum observation period of 1 year and a maximum observation period of 7 years. Results of the meta-analysis indicated that intracoronal indirect resin composite restorations have an 18% higher rate of failure when compared to intracoronal gold restorations over 5-7 years of clinical service (risk difference =  - 0.18 [95% CI: - 0.27, - 0.09]; p = .0002; I2 = 0%). The meta-analysis examining the disparity in survival rates between intracoronal gold and leucite restorations could not be carried out due to methodological differences in the studies.CONCLUSIONS: According to the currently available evidence, medium-quality data indicates that lithium disilicate and indirect composite materials demonstrate comparable survival rates in short-term follow-up. Furthermore, intracoronal gold restorations showed significantly higher survival rates, making them a preferred option over intracoronal indirect resin-composite restorations. Besides that, the analysis revealed no statistically significant difference in survival rates between leucite and indirect composite restorations. The short observation period, limited number of eligible articles, and low sample size of the included studies were significant limitations.CLINICAL SIGNIFICANCE: Bearing in mind the limitations of the reviewed literature, this systematic review and meta-analysis help clinicians make evidence-based decisions on how to restore biomechanically compromised posterior teeth.</p

    Influence of Preparation Design and Restorative Material on Fatigue and Fracture Strength of Restored Maxillary Premolars

    Get PDF
    Statement of Problem: Extensive carious lesions and/or large preexisting restorations possibly contribute to crack formation, ultimately resulting in a fracture that may lead to the loss of a tooth cusp. Hence, preparation design strategy in conjunction with the restorative material selected could be influential in the occurrence of a cuspal fracture. Purpose: The purpose of this in vitro study was to evaluate the fatigue behavior and fracture strength of maxillary premolars restored with direct composite and indirect ceramic inlays and overlays, with different preparation depths in the presence or absence of cuspal coverage, and analyze their failure types. Methods and Materials: Sound maxillary premolars (N=90; n=10) were divided into nine groups: group C: control; group DCI3: direct composite inlay 3 mm; group DCI5: direct composite inlay 5 mm; group ICI3: indirect ceramic inlay 3 mm; group ICI5: indirect ceramic inlay 5 mm; group DCO3: direct composite overlay 3 mm; group DCO5: direct composite overlay 5 mm; group ICO3: indirect ceramic overlay 3 mm; group ICO5: indirect ceramic overlay 5 mm. In indirect ceramic, lithium disilicate restoration groups, immediate dentin sealing was applied. After restoration, all specimens were tested in fatigue (1,200,000 cycles, 50 N, 1.7 Hz). Samples were critically appraised, and the specimens without failure were subjected to a load to failure test. Failure types were classified and the data analyzed. Results: Zero failures were observed in the fatigue testing. The following mean load to failure strengths (N) were recorded: group ICO5: 858 N; group DCI3: 829 N; group ICO3: 816 N; group C: 804 N; group ICI3: 681 N; group DCO5: 635 N; group DCI5: 528 N; group DCO3: 507 N; group ICI5: 482 N. Zero interaction was found between design-depth-material (p=0.468). However, significant interactions were found for the design-depth (p=0.012) and design-material (p=0.006). Within restorations at preparation depth of 3 mm, direct composite overlays obtained a significantly lower fracture strength in comparison to indirect ceramic onlays (p=0.013) and direct composite inlays (p=0.028). In restorations at depth 5 mm, significantly higher fracture load values were observed in indirect ceramic overlays compared with the inlays (p=0.018). Indirect ceramic overlays on 3 mm were significantly stronger than the deep inlays in ceramic (p=0.002) and tended to be stronger than the deep direct composite inlays. Severe, nonreparable fractures were observed with preparation depth of 5 mm within ceramic groups. Conclusions: The preparation depth significantly affected the fracture strength of tooth when restored with either composite or ceramic materials. Upon deep cavity preparations, cuspal coverage proved to be beneficial when a glass ceramic was used as the restorative material. Upon shallow cavity preparations, a minimally invasive approach regarding preparation design used in conjunction with a direct composite material was favorable

    The surface energy balance during foehn events at Joyce Glacier, McMurdo Dry Valleys, Antarctica

    Get PDF
    The McMurdo Dry Valleys (MDV) are a polar desert, where glacial melt is the main source of water to streams and the ecosystem. Summer air temperatures are typically close to zero, and therefore foehn events can have a large impact on the meltwater production. A 14-month record of automatic weather station (AWS) data on Joyce Glacier is used to force a 1D surface energy balance model to study the impact of foehn events on the energy balance. AWS data and output of the Antarctic Mesoscale Prediction System (AMPS) on a 1.7 km grid are used to detect foehn events at the AWS site. Foehn events at Joyce Glacier occur under the presence of cyclones over the Ross Sea. The location of Joyce Glacier on the leeward side of the Royal Society Range during these synoptic events causes foehn warming through isentropic drawdown. This mechanism differs from the foehn warming through gap flow that was earlier found for other regions in the MDV and highlights the complex interaction of synoptic flow with local topography of the MDV. Shortwave radiation is the primary control on melt at Joyce Glacier, and melt often occurs with subzero air temperatures. During foehn events, melt rates are enhanced, contributing to 23 % of the total annual melt. Foehn winds cause a switch from a diurnal stability regime in the atmospheric surface layer to a continuous energy input from sensible heat flux throughout the day. The sensible heating during foehn, through an increase in turbulent mixing resulting from gustier and warmer wind conditions, is largely compensated for by extra heat losses through sublimation. Melt rates are enhanced through an additional energy surplus from a reduced albedo during foehn
    corecore