391 research outputs found

    Random subgraphs of finite graphs: I. The scaling window under the triangle condition

    Full text link
    We study random subgraphs of an arbitrary finite connected transitive graph G\mathbb G obtained by independently deleting edges with probability 1−p1-p. Let VV be the number of vertices in G\mathbb G, and let Ω\Omega be their degree. We define the critical threshold pc=pc(G,λ)p_c=p_c(\mathbb G,\lambda) to be the value of pp for which the expected cluster size of a fixed vertex attains the value λV1/3\lambda V^{1/3}, where λ\lambda is fixed and positive. We show that for any such model, there is a phase transition at pcp_c analogous to the phase transition for the random graph, provided that a quantity called the triangle diagram is sufficiently small at the threshold pcp_c. In particular, we show that the largest cluster inside a scaling window of size |p-p_c|=\Theta(\cn^{-1}V^{-1/3}) is of size Θ(V2/3)\Theta(V^{2/3}), while below this scaling window, it is much smaller, of order O(ϔ−2log⁥(VÏ”3))O(\epsilon^{-2}\log(V\epsilon^3)), with \epsilon=\cn(p_c-p). We also obtain an upper bound O(\cn(p-p_c)V) for the expected size of the largest cluster above the window. In addition, we define and analyze the percolation probability above the window and show that it is of order \Theta(\cn(p-p_c)). Among the models for which the triangle diagram is small enough to allow us to draw these conclusions are the random graph, the nn-cube and certain Hamming cubes, as well as the spread-out nn-dimensional torus for n>6n>6

    A local limit theorem for the critical random graph

    Get PDF
    We consider the limit distribution of the orders of the k largest components in the ErdÂżos-RĂ©nyi random graph inside the critical window for arbitrary k. We prove a local limit theorem for this joint distribution and derive an exact expression for the joint probability density function

    Switch chain mixing times through triangle counts

    Get PDF
    Sampling uniform simple graphs with power-law degree distributions with degree exponent τ∈(2,3) is a non-trivial problem. We propose a method to sample uniform simple graphs that uses a constrained version of the configuration model together with a Markov Chain switching method. We test the convergence of this algorithm numerically in the context of the presence of small subgraphs. We then compare the number of triangles in uniform random graphs with the number of triangles in the erased configuration model. Using simulations and heuristic arguments, we conjecture that the number of triangles in the erased configuration model is larger than the number of triangles in the uniform random graph, provided that the graph is sufficiently large

    Random graph asymptotics on high-dimensional tori. II. Volume, diameter and mixing time

    Get PDF
    For critical bond-percolation on high-dimensional torus, this paper proves sharp lower bounds on the size of the largest cluster, removing a logarithmic correction in the lower bound in Heydenreich and van der Hofstad (2007). This improvement finally settles a conjecture by Aizenman (1997) about the role of boundary conditions in critical high-dimensional percolation, and it is a key step in deriving further properties of critical percolation on the torus. Indeed, a criterion of Nachmias and Peres (2008) implies appropriate bounds on diameter and mixing time of the largest clusters. We further prove that the volume bounds apply also to any finite number of the largest clusters. The main conclusion of the paper is that the behavior of critical percolation on the high-dimensional torus is the same as for critical Erdos-Renyi random graphs. In this updated version we incorporate an erratum to be published in a forthcoming issue of Probab. Theory Relat. Fields. This results in a modification of Theorem 1.2 as well as Proposition 3.1.Comment: 16 pages. v4 incorporates an erratum to be published in a forthcoming issue of Probab. Theory Relat. Field

    The structure of typical clusters in large sparse random configurations

    Get PDF
    The initial purpose of this work is to provide a probabilistic explanation of a recent result on a version of Smoluchowski's coagulation equations in which the number of aggregations is limited. The latter models the deterministic evolution of concentrations of particles in a medium where particles coalesce pairwise as time passes and each particle can only perform a given number of aggregations. Under appropriate assumptions, the concentrations of particles converge as time tends to infinity to some measure which bears a striking resemblance with the distribution of the total population of a Galton-Watson process started from two ancestors. Roughly speaking, the configuration model is a stochastic construction which aims at producing a typical graph on a set of vertices with pre-described degrees. Specifically, one attaches to each vertex a certain number of stubs, and then join pairwise the stubs uniformly at random to create edges between vertices. In this work, we use the configuration model as the stochastic counterpart of Smoluchowski's coagulation equations with limited aggregations. We establish a hydrodynamical type limit theorem for the empirical measure of the shapes of clusters in the configuration model when the number of vertices tends to ∞\infty. The limit is given in terms of the distribution of a Galton-Watson process started with two ancestors

    The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion

    Full text link
    For independent nearest-neighbour bond percolation on Z^d with d >> 6, we prove that the incipient infinite cluster's two-point function and three-point function converge to those of integrated super-Brownian excursion (ISE) in the scaling limit. The proof is based on an extension of the new expansion for percolation derived in a previous paper, and involves treating the magnetic field as a complex variable. A special case of our result for the two-point function implies that the probability that the cluster of the origin consists of n sites, at the critical point, is given by a multiple of n^{-3/2}, plus an error term of order n^{-3/2-\epsilon} with \epsilon >0. This is a strong statement that the critical exponent delta is given by delta =2.Comment: 56 pages, 3 Postscript figures, in AMS-LaTeX, with graphicx, epic, and xr package

    Mean-field driven first-order phase transitions in systems with long-range interactions

    Full text link
    We consider a class of spin systems on Zd\Z^d with vector valued spins (\bS_x) that interact via the pair-potentials J_{x,y} \bS_x\cdot\bS_y. The interactions are generally spread-out in the sense that the Jx,yJ_{x,y}'s exhibit either exponential or power-law fall-off. Under the technical condition of reflection positivity and for sufficiently spread out interactions, we prove that the model exhibits a first-order phase transition whenever the associated mean-field theory signals such a transition. As a consequence, e.g., in dimensions d≄3d\ge3, we can finally provide examples of the 3-state Potts model with spread-out, exponentially decaying interactions, which undergoes a first-order phase transition as the temperature varies. Similar transitions are established in dimensions d=1,2d=1,2 for power-law decaying interactions and in high dimensions for next-nearest neighbor couplings. In addition, we also investigate the limit of infinitely spread-out interactions. Specifically, we show that once the mean-field theory is in a unique ``state,'' then in any sequence of translation-invariant Gibbs states various observables converge to their mean-field values and the states themselves converge to a product measure.Comment: 57 pages; uses a (modified) jstatphys class fil

    Moment-based parameter estimation in binomial random intersection graph models

    Full text link
    Binomial random intersection graphs can be used as parsimonious statistical models of large and sparse networks, with one parameter for the average degree and another for transitivity, the tendency of neighbours of a node to be connected. This paper discusses the estimation of these parameters from a single observed instance of the graph, using moment estimators based on observed degrees and frequencies of 2-stars and triangles. The observed data set is assumed to be a subgraph induced by a set of n0n_0 nodes sampled from the full set of nn nodes. We prove the consistency of the proposed estimators by showing that the relative estimation error is small with high probability for n0≫n2/3≫1n_0 \gg n^{2/3} \gg 1. As a byproduct, our analysis confirms that the empirical transitivity coefficient of the graph is with high probability close to the theoretical clustering coefficient of the model.Comment: 15 pages, 6 figure
    • 

    corecore