97 research outputs found

    Molecular targeting of protein arginine deiminases to suppress colitis and prevent colon cancer

    Get PDF
    Ulcerative colitis (UC) is a chronic disease, in which the lining of the colon becomes inflamed and develops ulcers leading to abdominal pain, diarrhea, and rectal bleeding. The extent of these symptoms depends on disease severity. The protein arginine deiminase (PAD) family of enzymes converts peptidyl-Arginine to peptidyl-Citrulline through citrullination. PADs are dysregulated, with abnormal citrullination in many diseases, including UC and colorectal cancer (CRC). We have developed the small molecule, pan-PAD inhibitor, Chlor-amidine (Cl-amidine), with multiple goals, including treating UC and preventing CRC. Building off our recent results showing that: 1) Cl-amidine suppresses colitis in vivo in a dextran sulfate sodium (DSS) mouse model; and 2) Cl-amidine induces microRNA (miR)-16 in vitro causing cell cycle arrest, we tested the hypothesis that Cl-amidine can prevent tumorigenesis and that miR-16 induction, by Cl-amidine, may be involved in vivo. Consistent with our hypothesis, we present evidence that Cl-amidine, delivered in the drinking water, prevents colon tumorigenesis in our mouse model of colitis-associated CRC where mice are given carcinogenic azoxymethane (AOM), followed by multiple cycles of 2% DSS to induce colitis. To begin identifying mechanisms, we examined the effects of Cl-amidine on miR-16. Results show miR-16 suppression during the colitis-to-cancer sequence in colon epithelial cells, which was rescued by drinking Cl-amidine. Likewise, Ki67 and cellular proliferation targets of miR-16 (Cyclins D1 and E1) were suppressed by Cl-amidine. The decrease in cell proliferation markers and increase in tumor suppressor miRNA expression potentially define a mechanism of how Cl-amidine is suppressing tumorigenesis in vivo

    Resveratrol (trans-3,5,4Ј-Trihydroxystilbene) Ameliorates Experimental Allergic Encephalomyelitis, Primarily via Induction of Apoptosis in T Cells Involving Activation of Aryl Hydrocarbon Receptor and Estrogen Receptor

    Get PDF
    ABSTRACT Resveratrol (trans-3,5,4Ј-trihydroxystilbene), a polyphenolic compound found in plant products, including red grapes, exhibits anticancer, antioxidant, and anti-inflammatory properties

    American ginseng suppresses inflammation and DNA damage associated with mouse colitis

    Get PDF
    Ulcerative colitis (UC) is a dynamic, idiopathic, chronic inflammatory condition associated with a high colon cancer risk. American ginseng has antioxidant properties and targets many of the players in inflammation. The aim of this study was to test whether American ginseng extract prevents and treats colitis. Colitis in mice was induced by the presence of 1% dextran sulfate sodium (DSS) in the drinking water or by 1% oxazolone rectally. American ginseng extract was mixed in the chow at levels consistent with that currently consumed by humans as a supplement (75 p.p.m., equivalent to 58 mg daily). To test prevention of colitis, American ginseng extract was given prior to colitis induction. To test treatment of colitis, American ginseng extract was given after the onset of colitis. In vitro studies were performed to examine mechanisms. Results indicate that American ginseng extract not only prevents but it also treats colitis. Inducible nitric oxide synthase and cyclooxygenase-2 (markers of inflammation) and p53 (induced by inflammatory stress) are also downregulated by American ginseng. Mucosal and DNA damage associated with colitis is at least in part a result of an oxidative burst from overactive leukocytes. We therefore tested the hypothesis that American ginseng extract can inhibit leukocyte activation and subsequent epithelial cell DNA damage in vitro and in vivo. Results are consistent with this hypothesis. The use of American ginseng extract represents a novel therapeutic approach for the prevention and treatment of UC

    The induction of microRNA-16 in colon cancer cells by protein arginine deiminase inhibition causes a p53-dependent cell cycle arrest.

    Get PDF
    Protein Arginine Deiminases (PADs) catalyze the post-translational conversion of peptidyl-Arginine to peptidyl-Citrulline in a calcium-dependent, irreversible reaction. Evidence is emerging that PADs play a role in carcinogenesis. To determine the cancer-associated functional implications of PADs, we designed a small molecule PAD inhibitor (called Chor-amidine or Cl-amidine), and tested the impact of this drug on the cell cycle. Data derived from experiments in colon cancer cells indicate that Cl-amidine causes a G1 arrest, and that this was p53-dependent. In a separate set of experiments, we found that Cl-amidine caused a significant increase in microRNA-16 (miRNA-16), and that this increase was also p53-dependent. Because miRNA-16 is a putative tumor suppressor miRNA, and others have found that miRNA-16 suppresses proliferation, we hypothesized that the p53-dependent G1 arrest associated with PAD inhibition was, in turn, dependent on miRNA-16 expression. Results are consistent with this hypothesis. As well, we found the G1 arrest is at least in part due to the ability of Cl-amidine-mediated expression of miRNA-16 to suppress its\u27 G1-associated targets: cyclins D1, D2, D3, E1, and cdk6. Our study sheds light into the mechanisms by which PAD inhibition can protect against or treat colon cancer

    Macrophages, Nitric Oxide and microRNAs Are Associated with DNA Damage Response Pathway and Senescence in Inflammatory Bowel Disease

    Get PDF
    Background: Cellular senescence can be a functional barrier to carcinogenesis. We hypothesized that inflammation modulates carcinogenesis through senescence and DNA damage response (DDR). We examined the association between senescence and DDR with macrophage levels in inflammatory bowel disease (IBD). In vitro experiments tested the ability of macrophages to induce senescence in primary cells. Inflammation modulating microRNAs were identified in senescence colon tissue for further investigation. Methodology/Principal Findings: Quantitative immunohistochemistry identified protein expression by colon cell type. Increased cellular senescence (HP1γ; P = 0.01) or DDR (γH2A.X; P = 0.031, phospho-Chk2, P = 0.014) was associated with high macrophage infiltration in UC. Co-culture with macrophages (ANA-1) induced senescence in >80% of primary cells (fibroblasts MRC5, WI38), illustrating that macrophages induce senescence. Interestingly, macrophage-induced senescence was partly dependent on nitric oxide synthase, and clinically relevant NO• levels alone induced senescence. NO• induced DDR in vitro, as detected by immunofluorescence. In contrast to UC, we noted in Crohn’s disease (CD) that senescence (HP1γ; P<0.001) and DDR (γH2A.X; P<0.05, phospho-Chk2; P<0.001) were higher, and macrophages were not associated with senescence. We hypothesize that nitric oxide may modulate senescence in CD; epithelial cells of CD had higher levels of NOS2 expression than in UC (P = 0.001). Microarrays and quantitative-PCR identified miR-21 expression associated with macrophage infiltration and NOS2 expression. Conclusions: Senescence was observed in IBD with senescence-associated β-galactosidase and HP1γ. Macrophages were associated with senescence and DDR in UC, and in vitro experiments with primary human cells showed that macrophages induce senescence, partly through NO•, and that NO• can induce DDR associated with senescence. Future experiments will investigate the role of NO• and miR-21 in senescence. This is the first study to implicate macrophages and nitrosative stress in a direct effect on senescence and DDR, which is relevant to many diseases of inflammation, cancer, and aging.Cancer Research Institute (New York, N.Y.) (Intramural Research Program)National Cancer Institute (U.S.) (Cancer Research Training Award Fellowship)Danish Cancer SocietyDanish National Research FoundationEuropean Commission (projects: Infla-Care, Biomedreg and DDResponse

    Mempelajari Sifat Fisika Sol Karet Cetak Dengan Filler Cangkang Telur Ayam

    Get PDF
    Tujuan penelitian adalah untuk menpelajari sifat fisika sol karet cetak dengan filler cangkang telur ayam. Sifat fisika yang dipelajari meliputi kekerasan, tegangan putus, ketahanan sobek dan ketahanan kikis. Penelitian dilakukan dengan 4 tahap yaitu pembuatan filler cangkang telur ayam, pembuatan sol karet cetak, pengujian sifat fisika dan penilaian secara visual. Perlakuan terdiri dari penggunaan cangkang telur ayam menggantikan filer karbon hitam meliputi perlakuan tanpa penggunaan cangkang telur ayam (A1), penggunaan filler cangkang telur ayam 15 Phr (B1), penggunaan filer cangkang telur ayam 30 Phr (C1) dan penggunaan filler cangkang telur ayam 45 Phr (D1). Hasil penelitian menunjukkan bahwa cangkang telur ayam dapat digunakan sebagai filler pada pembuatan sol karet cetak. Penggunaan filler cangkang telur ayam yang semakin meningkat menghasilkan sol karet cetak dengan kekerasan yang cenderung semakin menurun, tegangan putus yang semakin menurun, ketahanan sobek yang semakin menurun dan ketahanan kikis yang semakin meningkat. Secara fisual sol karet cetak yang dihasilkan dari filler cangkang telur ayam menghasilkan sol karet cetak yang baik (tidak cacat berupa sobek, lubang, lepuh, retak dan goresan)

    Circadian Disruption, \u3cem\u3ePer3\u3c/em\u3e, and Human Cytokine Secretion

    Get PDF
    Circadian disruption has been linked with inflammation, an established cancer risk factor. Per3 clock gene polymorphisms have also been associated with circadian disruption and with increased cancer risk. Patients completed a questionnaire and provided a blood sample prior to undergoing a colonoscopy (n=70). Adjusted mean serum cytokine concentrations (IL-6, TNF-alpha, gamma-INF, IL-I ra, IL-I-beta, VEGF) were compared among patients with high and low scores for fatigue (Multidimensional Fatigue Inventory), depressive symptoms (Beck Depression Inventory II), or sleep disruption (Pittsburgh Sleep Quality Index), or among patients with different Per3 clock gene variants. Poor sleep was associated with elevated VEGF, and fatigue-related reduced activity was associated with elevated TNF-alpha concentrations. Participants with the 4/5 or 5/5 Per3 variable tandem repeat sequence had elevated IL-6 concentrations compared to those with the 4/4 genotype. Biological processes linking circadian disruption with cancer remain to be elucidated. Increased inflammatory cytokine secretion may play a role
    corecore