29 research outputs found

    Photon-Upconverting Materials: Advances and Prospects for Various Emerging Applications

    Get PDF
    Rare-earth-doped upconversion materials, featuring exceptional photophysical properties including long lifetime, sharp emission lines, large anti-Stokes shift, low autofluorescence of the background, and low toxicity, are promising for many applications. These materials have been investigated extensively since the 1960s and employed in many optical devices. However, due to rapid development of synthesis strategies for nanomaterials, upconversion materials have been rehighlighted on the basis of nanotechnology. Herein, we discuss the recent advances in upconversion materials. We start by considering energy transfer processes involved in the basic study of upconversion emission phenomena, as well as synthesis strategies of these materials. Progress in different energy transfer processes, which play an important role in determining luminescence efficiency, is then discussed. Newer applications of these materials have been vastly reviewed

    Towards quantitative Low Energy Ion Scattering on CaSiO3_3 from Comparison to Multiple-Scattering-Resolved Dynamical Binary Collision Approximation Simulations

    Full text link
    We perform Low Energy Ion Scattering with 1\,keV He ions on CaSiO3_3 using a commercial electrostatic detector system and determine the charge fraction of scattered ions from comparison with Binary Collision Approximation simulations. The simulations take dynamical surface changes due to surface cleaning Ar sputtering into account and scattered He particles are separated into single, dual, and multiple scattering trajectories. We find that the charge fraction of single and dual scattered He is about 10 times higher than the one for multiple collisions. Our results show that quantitative concentration profiles can be inferred from this method, if the charge fraction components are determined first

    Crystal field analysis of Pm3+^{3+} (4f4)andSm^{f4}) and Sm^{3+}(4 (4^{f5}) and lattice location studies of 147^{147}Nd and 147^{147}Pm in w-AlN

    Get PDF
    We report a detailed crystal field analysis of Pm3+ and Sm3+ as well as lattice location studies of 147Pm and 147Nd in 2H-aluminum nitride (w-AlN). The isotopes of mass 147 were produced by nuclear fission and implanted at an energy of 60 keV. The decay chain of interest in this work is 147Nd→147Pm→147Sm (stable). Lattice location studies applying the emission channeling technique were carried out using the β− particles and conversion electrons emitted in the radioactive decay of 147Nd→147Pm. The samples were investigated as implanted, and also they were investigated after annealing to temperatures of 873 K as well as 1373 K. The main fraction of about 60% of both 147Pm as well as 147Nd atoms was located on substitutional Al sites in the AlN lattice; the remainder of the ions were located randomly within the AlN lattice. Following radioactive decay of 147Nd, the cathodoluminescence spectra of Pm3+ and Sm3+ were obtained between 500 nm and 1050 nm at sample temperatures between 12 K and 300 K. High-resolution emission spectra, representing intra-4f electron transitions, were analyzed to establish the crystal-field splitting of the energy levels of Sm3+ (4f5) and Pm3+ (4f4) in cationic sites having C3v symmetry in the AlN lattice. Using crystal-field splitting models, we obtained a rms deviation of 6 cm−1 between 31 calculated-to-experimental energy (Stark) levels for Sm3+ in AlN. The results are similar to those reported for Sm3+ implanted into GaN. Using a set of crystal-field splitting parameters Bnm, for Pm3+ derived from the present Sm3+ analysis, we calculated the splitting for the 5F1, 5I4, and 5I5 multiplet manifolds in Pm3+ and obtained good agreement between the calculated and the experimental Stark levels. Temperature-dependent lifetime measurements are also reported for the emitting levels 4F5∕2 (Sm3+) and 5F1 (Pm3+)

    Optical properties of MoSe2_2 monolayer implanted with ultra-low energy Cr ions

    Full text link
    The paper explores the optical properties of an exfoliated MoSe2_2 monolayer implanted with Cr+^+ ions, accelerated to 25 eV. Photoluminescence of the implanted MoSe2_2 reveals an emission line from Cr-related defects that is present only under weak electron doping. Unlike band-to-band transition, the Cr-introduced emission is characterised by non-zero activation energy, long lifetimes, and weak response to the magnetic field. To rationalise the experimental results and get insights into the atomic structure of the defects, we modelled the Cr-ion irradiation process using ab-initio molecular dynamics simulations followed by the electronic structure calculations of the system with defects. The experimental and theoretical results suggest that the recombination of electrons on the acceptors, which could be introduced by the Cr implantation-induced defects, with the valence band holes is the most likely origin of the low energy emission. Our results demonstrate the potential of low-energy ion implantation as a tool to tailor the properties of 2D materials by doping

    A hyperfine look at titanium dioxide

    Get PDF
    Titanium dioxide is a commonly used material in a wide range of applications, due to its low price, and the increasing demand for it in the food- and pharmaceutical industries, and for low- and high-tech applications. Time-differential perturbed angular correlation (TDPAC) and Mössbauer spectroscopy measurements have a local character and can provide important and new information on the hyperfine interactions in titanium dioxide. With the application of characterization techniques and radioactive beams, these methods have become very powerful, especially for the determination of temperature dependence of hyperfine parameters, even at elevated temperatures. Such measurements lead to a better understanding of lattice defects and irregularities, including local environments with low fractions of particular defect configurations that affect electric quadrupole interactions. At ISOLDE-CERN, physicists benefit from the many beams available for the investigation of new doping configurations in titanium dioxide. We report the annealing study of titanium dioxide by means of the time differential perturbed γ-γ angular correlation of 111mCd/111Cd in order to study the possible effects of vacancies in hyperfine parameters. This paper also provides an overview of TDPAC measurements and gives future perspectives
    corecore