1,012 research outputs found

    Fluorescent Silicon Clusters and Nanoparticles

    Full text link
    The fluorescence of silicon clusters is reviewed. Atomic clusters of silicon have been at the focus of research for several decades because of the relevance of size effects for material properties, the importance of silicon in electronics and the potential applications in bio-medicine. To date numerous examples of nanostructured forms of fluorescent silicon have been reported. This article introduces the principles and underlying concepts relevant for fluorescence of nanostructured silicon such as excitation, energy relaxation, radiative and non-radiative decay pathways and surface passivation. Experimental methods for the production of silicon clusters are presented. The geometric and electronic properties are reviewed and the implications for the ability to emit fluorescence are discussed. Free and pure silicon clusters produced in molecular beams appear to have properties that are unfavourable for light emission. However, when passivated or embedded in a suitable host, they may emit fluorescence. The current available data show that both quantum confinement and localised transitions, often at the surface, are responsible for fluorescence. By building silicon clusters atom by atom, and by embedding them in shells atom by atom, new insights into the microscopic origins of fluorescence from nanoscale silicon can be expected.Comment: 5 figures, chapter in "Silicon Nanomaterials Sourcebook", editor Klaus D. Sattler, CRC Press, August 201

    Weak Disorder in Fibonacci Sequences

    Full text link
    We study how weak disorder affects the growth of the Fibonacci series. We introduce a family of stochastic sequences that grow by the normal Fibonacci recursion with probability 1-epsilon, but follow a different recursion rule with a small probability epsilon. We focus on the weak disorder limit and obtain the Lyapunov exponent, that characterizes the typical growth of the sequence elements, using perturbation theory. The limiting distribution for the ratio of consecutive sequence elements is obtained as well. A number of variations to the basic Fibonacci recursion including shift, doubling, and copying are considered.Comment: 4 pages, 2 figure

    Discovery of a Magnetic White Dwarf in the Symbiotic Binary Z Andromedae

    Get PDF
    We report the first result from our survey of rapid variability in symbiotic binaries: the discovery of a persistent oscillation at P=1682.6 +- 0.6 s in the optical emission from the prototype symbiotic, Z Andromedae. The oscillation was detected on all 8 occasions on which the source was observed over a timespan of nearly a year, making it the first such persistent periodic pulse found in a symbiotic binary. The amplitude was typically 2 - 5 mmag, and it was correlated with the optical brightness during a relatively small outburst of the system. The most natural explanation is that the oscillation arises from the rotation of an accreting, magnetic (B_S > 10^5 G) white dwarf. This discovery constrains the outburst mechanisms, since the oscillation emission region near the surface of the white dwarf was visible during the outburst.Comment: Accepted for publication in the Astrophysical Journal (6 pages, including 4 figures), LaTe

    Experiments on Nucleation in Different Flow Regimes

    Get PDF
    The vast majority of metallic engineering materials are solidified from the liquid phase. Understanding the solidification process is essential to control microstructure, which in turn, determines the properties of materials. The genesis of solidification is nucleation, where the first stable solid forms from the liquid phase. Nucleation kinetics determine the degree of undercooling and phase selection. As such, it is important to understand nucleation phenomena in order to control solidification or glass formation in metals and alloys

    Imaging the Earth's Interior: the Angular Distribution of Terrestrial Neutrinos

    Full text link
    Decays of radionuclides throughout the Earth's interior produce geothermal heat, but also are a source of antineutrinos. The (angle-integrated) geoneutrino flux places an integral constraint on the terrestrial radionuclide distribution. In this paper, we calculate the angular distribution of geoneutrinos, which opens a window on the differential radionuclide distribution. We develop the general formalism for the neutrino angular distribution, and we present the inverse transformation which recovers the terrestrial radioisotope distribution given a measurement of the neutrino angular distribution. Thus, geoneutrinos not only allow a means to image the Earth's interior, but offering a direct measure of the radioactive Earth, both (1) revealing the Earth's inner structure as probed by radionuclides, and (2) allowing for a complete determination of the radioactive heat generation as a function of radius. We present the geoneutrino angular distribution for the favored Earth model which has been used to calculate geoneutrino flux. In this model the neutrino generation is dominated by decays in the Earth's mantle and crust; this leads to a very ``peripheral'' angular distribution, in which 2/3 of the neutrinos come from angles > 60 degrees away from the downward vertical. We note the possibility of that the Earth's core contains potassium; different geophysical predictions lead to strongly varying, and hence distinguishable, central intensities (< 30 degrees from the downward vertical). Other uncertainties in the models, and prospects for observation of the geoneutrino angular distribution, are briefly discussed. We conclude by urging the development and construction of antineutrino experiments with angular sensitivity. (Abstract abridged.)Comment: 25 pages, RevTeX, 7 figures. Comments welcom

    On hydrogen bond correlations at high pressures

    Full text link
    In situ high pressure neutron diffraction measured lengths of O H and H O pairs in hydrogen bonds in substances are shown to follow the correlation between them established from 0.1 MPa data on different chemical compounds. In particular, the conclusion by Nelmes et al that their high pressure data on ice VIII differ from it is not supported. For compounds in which the O H stretching frequencies red shift under pressure, it is shown that wherever structural data is available, they follow the stretching frequency versus H O (or O O) distance correlation. For compounds displaying blue shifts with pressure an analogy appears to exist with improper hydrogen bonds.Comment: 12 pages,4 figure

    Optical Monitoring of 3C 390.3 from 1995 to 2004 and Possible Periodicities in the Historical Light Curve

    Full text link
    We report V, R, and I band CCD photometry of the radio galaxy 3C 390.3 obtained with the 1.56-m telescope of the Shanghai Astronomical Observatory from March 1995 to August 2004. Combining these data with data from the literature, we have constructed a historical light curve from 1894 to 2004 and searched for periodicities using the CLEANest program. We find possible periods of 8.30+-1.17, 5.37+-0.49, 3.51+-0.21, and 2.13+-0.08 years.Comment: Accepted by AJ, 34 pages, 11 figure

    Stability and Evolution of Supernova Fallback Disks

    Get PDF
    We show that thin accretion disks made of Carbon or Oxygen are subject to the same thermal ionization instability as Hydrogen and Helium disks. We argue that the instability applies to disks of any metal content. The relevance of the instability to supernova fallback disks probably means that their power-law evolution breaks down when they first become neutral. We construct simple analytical models for the viscous evolution of fallback disks to show that it is possible for these disks to become neutral when they are still young (ages of a few 10^3 to 10^4 years), compact in size (a few 10^9 cm to 10^11 cm) and generally accreting at sub-Eddington rates (Mdot ~ a few 10^14 - 10^18 g/s). Based on recent results on the nature of viscosity in the disks of close binaries, we argue that this time may also correspond to the end of the disk activity period. Indeed, in the absence of a significant source of viscosity in the neutral phase, the entire disk will likely turn to dust and become passive. We discuss various applications of the evolutionary model, including anomalous X-ray pulsars and young radio pulsars. Our analysis indicates that metal-rich fallback disks around newly-born neutron stars and black holes become neutral generally inside the tidal truncation radius (Roche limit) for planets, at \~10^11 cm. Consequently, the efficiency of the planetary formation process in this context will mostly depend on the ability of the resulting disk of rocks to spread via collisions beyond the Roche limit. It appears easier for the merger product of a doubly degenerate binary, whether it is a massive white dwarf or a neutron star, to harbor planets because it can spread beyond the Roche limit before becoming neutral.[Abridged]Comment: 34 pages, 2 figures, accepted for publication in Ap

    Concurrent invasions by European starlings (Sturnus vulgaris) suggest selection on shared genomic regions even after genetic bottlenecks

    Get PDF
    A species’ success during the invasion of new areas hinges on an interplay between the demographic processes common to invasions and the specific ecological context of the novel environment. Evolutionary genetic studies of invasive species can investigate how genetic bottlenecks and ecological conditions shape genetic variation in invasions, and our study pairs two invasive populations that are hypothesized to be from the same source population to compare how each population evolved during and after introduction. Invasive European Starlings (Sturnus vulgaris) established populations in both Australia and North America in the 19th century. Here, we compare whole-genome sequences among native and independently introduced European Starling populations to determine how demographic processes interact with rapid evolution to generate similar genetic patterns in these recent and replicated invasions. Demographic models indicate that both invasive populations experienced genetic bottlenecks as expected based on invasion history, and we find that specific genomic regions have differentiated even on this short evolutionary timescale. Despite genetic bottlenecks, we suggest that genetic drift alone cannot explain differentiation in at least two of these regions. The demographic boom intrinsic to many invasions as well as potential inversions may have led to high population-specific differentiation, although the patterns of genetic variation are also consistent with the hypothesis that this infamous and highly mobile invader adapted to novel selection (e.g., extrinsic factors). We use targeted sampling of replicated invasions to identify and evaluate support for multiple, interacting evolutionary mechanisms that lead to differentiation during the invasion process
    • 

    corecore