7 research outputs found

    Effect of Exercise-Induced Reductions in Blood Volume on Cardiac Output and Oxygen Transport Capacity

    Get PDF
    We wanted to demonstrate the relationship between blood volume, cardiac size, cardiac output and maximum oxygen uptake ([Formula: see text] O(2max)) and to quantify blood volume shifts during exercise and their impact on oxygen transport. Twenty-four healthy, non-smoking, heterogeneously trained male participants (27 ± 4.6 years) performed incremental cycle ergometer tests to determine [Formula: see text] O(2max) and changes in blood volume and cardiac output. Cardiac output was determined by an inert gas rebreathing procedure. Heart dimensions were determined by 3D echocardiography. Blood volume and hemoglobin mass were determined by using the optimized CO-rebreathing method. The [Formula: see text] O(2max) ranged between 47.5 and 74.1 mL⋅kg(–1)⋅min(–1). Heart volume ranged between 7.7 and 17.9 mL⋅kg(–1) and maximum cardiac output ranged between 252 and 434 mL⋅kg(–1)⋅min(–1). The mean blood volume decreased by 8% (567 ± 187 mL, p = 0.001) until maximum exercise, leading to an increase in [Hb] by 1.3 ± 0.4 g⋅dL(–1) while peripheral oxygen saturation decreased by 6.1 ± 2.4%. There were close correlations between resting blood volume and heart volume (r = 0.73, p = 0.002), maximum blood volume and maximum cardiac output (r = 0.68, p = 0.001), and maximum cardiac output and [Formula: see text] O(2max) (r = 0.76, p < 0.001). An increase in maximum blood volume by 1,000 mL was associated with an increase in maximum stroke volume by 25 mL and in maximum cardiac output by 3.5 L⋅min(–1). In conclusion, blood volume markedly decreased until maximal exhaustion, potentially affecting the stroke volume response during exercise. Simultaneously, hemoconcentrations maintained the arterial oxygen content and compensated for the potential loss in maximum cardiac output. Therefore, a large blood volume at rest is an important factor for achieving a high cardiac output during exercise and blood volume shifts compensate for the decrease in peripheral oxygen saturation, thereby maintaining a high arteriovenous oxygen difference

    Erythropoietic effects of low-dose cobalt application

    No full text
    Cobaltous ions (Co2+) stabilize HIF alpha, increase endogenous erythropoietin (EPO) production, and may, therefore, be used as a performance-enhancing substance. To date, the dosage necessary to stimulate erythropoiesis is unknown. The aim of this study was, therefore, to determine the minimum dosage necessary to increase erythropoietic processes. In a first double-blind placebo-controlled study (n = 5), single oral Co2+ dosages of 5 mg (n = 6) and 10 mg (n = 7) were administered to healthy young men. Cubital venous blood and urine samples were collected before and up to 24 hours after Co2+ administration. In a second study, the same daily Co2+ dosages were administered for five days (placebo: n = 5, 5 mg: n = 9, 10 mg: n = 7). Blood and urine samples were taken the day before administration and at day 3 and day 5. Plasma [EPO] was elevated by 20.5 +/- 16.9% at 5 hours after the single 5-mg administration (p < 0.05) and by 52.8 +/- 23.5% up to 7 hours following the 10-mg Co2+ administration (p < 0.001). Urine [Co2+] transiently increased, with maximum values 3-5 hours after Co2+ ingestion (5 mg: from 0.8 +/- 1.1 to 153.6 +/- 109.4 ng/mL, 10 mg: from 1.3 +/- 1.7 to 338.0 +/- 231,5 ng/mL). During the five days of Co2+ application, 5 mg showed a strong tendency to increase [EPO], while the 10-mg application significantly increased [EPO] at day 5 by 27.2 +/- 26.4% (p < 0.05) and the immature reticulocyte fraction by 49.9 +/- 21.7% (p < 0.01). [Ferritin] was decreased by 12.4 +/- 10.4 ng/mL (p < 0.05). An oral Co2+ dosage of 10 mg/day exerts clear erythropoietic effects, and 5 mg/day tended to increase plasma EPO concentration

    Disruption of tubulin-alpha4a polyglutamylation prevents aggregation of hyper-phosphorylated tau and microglia activation in mice

    No full text
    Pathologic oligomerization of hyper-phosphorylated Tau is a hallmark of tauopathies. Here the authors show that the loss of tubulin a4 polyglutamylation reverses tau hyperphosphorylation, oligomerization and microglia activation in a tauopathy mouse
    corecore