25,389 research outputs found
Efficient avian pollination of Strelitzia reginae outside of South Africa
AbstractIn its native South Africa, endemic birds pollinate the complex flowers of Strelitzia reginae (bird of paradise) through a highly complex method of pollination. The plant is cultivated worldwide in warm-temperated regions but systematic pollination of the ornithophilous species by local birds has not been reported, and, consequently, seed production is rare outside of South Africa. We found that a member of the New World warblers, Geothlypis trichas, efficiently carried out pollination of S. reginae in southern California, thereby supplementing its typical diet of insects with the energy-rich nectar of S. reginae. Only occasionally, seeds were found in plantings not visited by these birds. The pollinator service provided by the warbler increases seed production in an area outside of South Africa. This could lead to adaptive changes in the exotic species, advance species establishment and persistence and possibly promote invasive behavior in a non-native environment
Suppression of spin-pumping by a MgO tunnel-barrier
Spin-pumping generates pure spin currents in normal metals at the ferromagnet
(F)/normal metal (N) interface. The efficiency of spin-pumping is given by the
spin mixing conductance, which depends on N and the F/N interface. We directly
study the spin-pumping through an MgO tunnel-barrier using the inverse spin
Hall effect, which couples spin and charge currents and provides a direct
electrical detection of spin currents in the normal metal. We find that
spin-pumping is suppressed by the tunnel-barrier, which is contrary to recent
studies that suggest that the spin mixing conductance can be enhanced by a
tunnel-barrier inserted at the interface
Fracture strength and Young's modulus of ZnO nanowires
The fracture strength of ZnO nanowires vertically grown on sapphire
substrates was measured in tensile and bending experiments. Nanowires with
diameters between 60 and 310 nm and a typical length of 2 um were manipulated
with an atomic force microscopy tip mounted on a nanomanipulator inside a
scanning electron microscope. The fracture strain of (7.7 +- 0.8)% measured in
the bending test was found close to the theoretical limit of 10% and revealed a
strength about twice as high as in the tensile test. From the tensile
experiments the Young's modulus could be measured to be within 30% of that of
bulk ZnO, contrary to the lower values found in literature.Comment: 5 pages, 3 figures, 1 tabl
Sol-Gel Derived Ferroelectric Nanoparticles Investigated by Piezoresponse Force Microscopy
Piezoresponse force microscopy (PFM) was used to investigate the
ferroelectric properties of sol-gel derived LiNbO nanoparticles. To
determine the degree of ferroelectricity we took large-area images and
performed statistical image-analysis. The ferroelectric behavior of single
nanoparticles was verified by poling experiments using the PFM tip. Finally we
carried out simultaneous measurements of the in-plane and the out-of-plane
piezoresponse of the nanoparticles, followed by measurements of the same area
after rotation of the sample by 90 and 180. Such
measurements basically allow to determine the direction of polarization of
every single particle
Toward Large-Eddy Simulations of Dust Devils of Observed Intensity: Effects of Grid Spacing, Background Wind, and Surface Heterogeneities
Dust devils are convective vortices with a vertical axis of rotation made visible by lifted soil particles. Currently, there is great uncertainty about the extent to which dust devils contribute to the atmospheric aerosol input and thereby influence Earth's radiation budget. Past efforts to quantify the aerosol transport and study their formation, maintenance, and statistics using large-eddy simulation (LES) have been of limited success. Therefore, some important features of dust devil-like vortices simulated with LES still do not compare well with those of observed ones. One major difference is the simulated value of the core pressure drop, which is almost 1 order of magnitude smaller compared to the observed range of 250 to 450 Pa. However, most of the existing numerical simulations are based on highly idealized setups and coarse grid spacings. In this study, we investigate the effects of various factors on the simulated vortex strength with high-resolution LES. For the fist time, we are able to reproduce observed core pressures by using a high spatial resolution of 2 m, a model setup with moderate background wind and a spatially heterogeneous surface heat flux. It is found that vortices mainly appear at the lines of horizontal flow convergence above the centers of the strongly heated patches, which is in contrast to some older observations in which vortices seemed to be created along the patch edges
Improving collisional growth in Lagrangian cloud models: development and verification of a new splitting algorithm
Lagrangian cloud models (LCMs) are increasingly used in the cloud physics
community. They not only enable a very detailed representation of cloud
microphysics but also lack numerical errors typical for most other models.
However, insufficient statistics, caused by an inadequate number of
Lagrangian particles to represent cloud microphysical processes, can limit
the applicability and validity of this approach. This study presents the
first use of a splitting and merging algorithm designed to improve the warm
cloud precipitation process by deliberately increasing or decreasing the
number of Lagrangian particles under appropriate conditions. This new
approach and the details of how splitting is executed are evaluated in box
and single-cloud simulations, as well as a shallow cumulus test case. The
results indicate that splitting is essential for a proper representation of
the precipitation process. Moreover, the details of the splitting method
(i.e., identifying the appropriate conditions) become insignificant for
larger model domains as long as a sufficiently large number of Lagrangian
particles is produced by the algorithm. The accompanying merging algorithm is
essential to constrict the number of Lagrangian particles in order to
maintain the computational performance of the model. Overall, splitting and
merging do not affect the life cycle and domain-averaged macroscopic
properties of the simulated clouds. This new approach is a useful addition to
all LCMs since it is able to significantly increase the number of Lagrangian
particles in appropriate regions of the clouds, while maintaining a
computationally feasible total number of Lagrangian particles in the entire
model domain.</p
Direct measurement of molecular stiffness and damping in confined water layers
We present {\em direct} and {\em linear} measurements of the normal stiffness
and damping of a confined, few molecule thick water layer. The measurements
were obtained by use of a small amplitude (0.36 ), off-resonance
Atomic Force Microscopy (AFM) technique. We measured stiffness and damping
oscillations revealing up to 7 layers separated by 2.56 0.20
. Relaxation times could also be calculated and were found to
indicate a significant slow-down of the dynamics of the system as the confining
separation was reduced. We found that the dynamics of the system is determined
not only by the interfacial pressure, but more significantly by solvation
effects which depend on the exact separation of tip and surface. Thus `
solidification\rq seems to not be merely a result of pressure and confinement,
but depends strongly on how commensurate the confining cavity is with the
molecule size. We were able to model the results by starting from the simple
assumption that the relaxation time depends linearly on the film stiffness.Comment: 7 pages, 6 figures, will be submitted to PR
Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers
Spin pumping is a mechanism that generates spin currents from ferromagnetic
resonance (FMR) over macroscopic interfacial areas, thereby enabling sensitive
detection of the inverse spin Hall effect that transforms spin into charge
currents in non-magnetic conductors. Here we study the spin-pumping-induced
voltages due to the inverse spin Hall effect in permalloy/normal metal bilayers
integrated into coplanar waveguides for different normal metals and as a
function of angle of the applied magnetic field direction, as well as microwave
frequency and power. We find good agreement between experimental data and a
theoretical model that includes contributions from anisotropic
magnetoresistance (AMR) and inverse spin Hall effect (ISHE). The analysis
provides consistent results over a wide range of experimental conditions as
long as the precise magnetization trajectory is taken into account. The spin
Hall angles for Pt, Pd, Au and Mo were determined with high precision to be
, , and ,
respectively.Comment: 11 page
Engineering Benchmarks for Planning: the Domains Used in the Deterministic Part of IPC-4
In a field of research about general reasoning mechanisms, it is essential to
have appropriate benchmarks. Ideally, the benchmarks should reflect possible
applications of the developed technology. In AI Planning, researchers more and
more tend to draw their testing examples from the benchmark collections used in
the International Planning Competition (IPC). In the organization of (the
deterministic part of) the fourth IPC, IPC-4, the authors therefore invested
significant effort to create a useful set of benchmarks. They come from five
different (potential) real-world applications of planning: airport ground
traffic control, oil derivative transportation in pipeline networks,
model-checking safety properties, power supply restoration, and UMTS call
setup. Adapting and preparing such an application for use as a benchmark in the
IPC involves, at the time, inevitable (often drastic) simplifications, as well
as careful choice between, and engineering of, domain encodings. For the first
time in the IPC, we used compilations to formulate complex domain features in
simple languages such as STRIPS, rather than just dropping the more interesting
problem constraints in the simpler language subsets. The article explains and
discusses the five application domains and their adaptation to form the PDDL
test suites used in IPC-4. We summarize known theoretical results on structural
properties of the domains, regarding their computational complexity and
provable properties of their topology under the h+ function (an idealized
version of the relaxed plan heuristic). We present new (empirical) results
illuminating properties such as the quality of the most wide-spread heuristic
functions (planning graph, serial planning graph, and relaxed plan), the growth
of propositional representations over instance size, and the number of actions
available to achieve each fact; we discuss these data in conjunction with the
best results achieved by the different kinds of planners participating in
IPC-4
- …