1,366 research outputs found

    Homo Citans and Carbon Allotropes : For an Ethics of Citation

    Get PDF
    Cite we must, cite we do. We cite because we are links in a chain, using properties and methods validated by others. We also cite to negotiate the anxiety of influence. And to be fair. After outlining the reasons for citation, we use two case studies of citation amnesia in the field of hypothetical carbon allotropes to present a computer-age search tool (SACADA) in that subsubfield. Finally, we advise on good search practice, including what to do if you miss a citation

    Climate change expected to drive habitat loss for two key herbivore species in an alpine environment

    Get PDF
    Aim Our first aim was to determine the environmental factors associated with two native Australian Lepidoptera species, Lomera caespitosae and Oncopera alpina, key herbivores of alpine and subalpine Poa grasses. Both species have been associated with areas of extensive grass death in Australian alpine regions, possibly affecting vegetation succession and recovery. Our second aim was to generate and evaluate potential distributional changes for both these moths and their host plants under scenarios of climate change. Location Alpine regions in south-eastern Australia. Methods We surveyed alpine regions in south-eastern Australia to compile presence–absence datasets for both moth species. We constructed ecological niche models from our survey data, in addition to predicting distributions of suitable host-plant species for the moths. Grass damage sites attributed to the moths were used additionally as independent test datasets to validate model performance. Future effects on species distributions under climate change scenarios were then investigated. Results The environmental factors affecting distributions differed between the moth species; for example, precipitation variables appeared to be important for L. caespitosae, while low winter–spring temperatures were expected to limit O. alpina. The findings were related to the presence of grass damage, which was greater in areas where species distributions overlapped. A declining trend in suitability was predicted for both herbivore species under climate change, while Poa spp. distributions were expected to be less influenced by climate change. Main conclusions The distributions of both moth species are more likely to be restricted by climate than host-plant availability. Predicted climate change effects are likely to put L. caespitosae under greater immediate risk of local extinction than O. alpina as a result of large areas of habitat loss by 2050

    Scaling analysis of Schottky barriers at metal-embedded semiconducting carbon nanotube interfaces

    Full text link
    We present an atomistic self-consistent tight-binding study of the electronic and transport properties of metal-semiconducting carbon nanotube interfaces as a function of the nanotube channel length when the end of the nanotube wire is buried inside the electrodes. We show that the lineup of the nanotube band structure relative to the metal Fermi-level depends strongly on the metal work function but weakly on the details of the interface. We analyze the length-dependent transport characteristics, which predicts a transition from tunneling to thermally-activated transport with increasing nanotube channel length.Comment: To appear in Phys.Rev.B Rapid Communications. Color figures available in PRB online versio

    Ecologically relevant measures of tolerance to potentially lethal temperatures

    Get PDF
    The acute thermal tolerance of ectotherms has been measured in a variety of ways; these include assays where organisms are shifted abruptly to stressful temperatures and assays where organisms experience temperatures that are ramped more slowly to stressful levels. Ramping assays are thought to be more relevant to natural conditions where sudden abrupt shifts are unlikely to occur often, but it has been argued that thermal limits established under ramping conditions are underestimates of true thermal limits because stresses due to starvation and/or desiccation can arise under ramping. These confounding effects might also impact the variance and heritability of thermal tolerance. We argue here that ramping assays are useful in capturing aspects of ecological relevance even though there is potential for confounding effects of other stresses that can also influence thermal limits in nature. Moreover, we show that the levels of desiccation and starvation experienced by ectotherms in ramping assays will often be minor unless the assays involve small animals and last for many hours. Empirical data illustrate that the combined effects of food and humidity on thermal limits under ramping and sudden shifts to stressful conditions are unpredictable; in Drosophila melanogaster the presence of food decreased rather than increased thermal limits, whereas in Ceratitis capitata they had little impact. The literature provides examples where thermal limits are increased under ramping presumably because of the potential for physiological changes leading to acclimation. It is unclear whether heritabilities and population differentiation will necessarily be lower under ramping because of confounding effects. Although it is important to clearly define experimental methods, particularly when undertaking comparative assessments, and to understand potential confounding effects, thermotolerance assays based on ramping remain an important tool for understanding and predicting species responses to environmental change. An important area for further development is to identify the impact of rates of temperature change under field and laboratory conditions

    Non-Abelian Einstein-Born-Infeld Black Holes

    Get PDF
    We construct regular and black hole solutions in SU(2) Einstein-Born-Infeld theory. These solutions have many features in common with the corresponding SU(2) Einstein-Yang-Mills solutions. In particular, sequences of neutral non-abelian solutions tend to magnetically charged limiting solutions, related to embedded abelian solutions. Thermodynamic properties of the black hole solutions are addressed.Comment: LaTeX, 14 pages, 6 postscript figures; typos corrected in reference

    NMR and NQR Fluctuation Effects in Layered Superconductors

    Full text link
    We study the effect of thermal fluctuations of the s-wave order parameter of a quasi two dimensional superconductor on the nuclear spin relaxation rate near the transition temperature Tc. We consider both the effects of the amplitude fluctuations and the Berezinskii-Kosterlitz-Thouless (BKT) phase fluctuations in weakly coupled layered superconductors. In the treatment of the amplitude fluctuations we employ the Gaussian approximation and evaluate the longitudinal relaxation rate 1/T1 for a clean s-wave superconductor, with and without pair breaking effects, using the static pair fluctuation propagator D. The increase in 1/T1 due to pair breaking in D is overcompensated by the decrease arising from the single particle Green's functions. The result is a strong effect on 1/T1 for even a small amount of pair breaking. The phase fluctuations are described in terms of dynamical BKT excitations in the form of pancake vortex-antivortex (VA) pairs. We calculate the effect of the magnetic field fluctuations caused by the translational motion of VA excitations on 1/T1 and on the transverse relaxation rate 1/T2 on both sides of the BKT transitation temperature T(BKT)<Tc. The results for the NQR relaxation rates depend strongly on the diffusion constant that governs the motion of free and bound vortices as well as the annihilation of VA pairs. We discuss the relaxation rates for real multilayer systems where the diffusion constant can be small and thus increase the lifetime of a VA pair, leading to an enhancement of the rates. We also discuss in some detail the experimental feasibility of observing the effects of amplitude fluctuations in layered s-wave superconductors such as the dichalcogenides and the effects of phase fluctuations in s- or d-wave superconductors such as the layered cuprates.Comment: 38 pages, 12 figure

    Evidence for host-associated clones of grape phylloxera Daktulosphaira vitifoliae (Hemiptera : Phylloxeridae) in Australia

    Get PDF
    Grape phylloxera, Daktulosphaira vitifoliae Fitch, is an important pest of grapevines (Vitis vinifera L.) (Vitaceae). Using microsatellite DNA markers it was demonstrated strong associations can exist between D. vitifoliae asexual lineages and vine host type within a vineyard. Also, in excised root bioassays, D. vitifoliae collected from three regions where different genotypic classes predominated showed host-specific differences in life table parameters of reproductive rate and intrinsic rate of increase. Lastly, comparisons of mitochondrial DNA (cytochrome oxidase I) sequences revealed that D. vitifoliae in Australia have paraphyletic origins and fall into two clades partially related to vine host usage. These findings indicate introduction of separate lineages of D. vitifoliae which have close host associations and as such, have important implications for management of this pest in Australia.A.M. Corrie, R. van Heeswijck and A.A. Hoffman

    Transverse Phase Locking for Vortex Motion in Square and Triangular Pinning Arrays

    Full text link
    We analyze transverse phase locking for vortex motion in a superconductor with a longitudinal DC drive and a transverse AC drive. For both square and triangular arrays we observe a variety of fractional phase locking steps in the velocity versus DC drive which correspond to stable vortex orbits. The locking steps are more pronounced for the triangular arrays which is due to the fact that the vortex motion has a periodic transverse velocity component even for zero transverse AC drive. All the steps increase monotonically in width with AC amplitude. We confirm that the width of some fractional steps in the square arrays scales as the square of the AC driving amplitude. In addition we demonstrate scaling in the velocity versus applied DC driving curves at depinning and on the main step, similar to that seen for phase locking in charge-density wave systems. The phase locking steps are most prominent for commensurate vortex fillings where the interstitial vortices form symmetrical ground states. For increasing temperature, the fractional steps are washed out very quickly, while the main step gains a linear component and disappears at melting. For triangular pinning arrays we again observe transverse phase locking, with the main and several of the fractional step widths scaling linearly with AC amplitude.Comment: 10 pages, 14 postscript figure

    Thin-shell wormholes with a generalized Chaplygin gas in Einstein-Born-Infeld theory

    Get PDF
    We construct spherically symmetric thin-shell wormholes supported by a generalized Chaplygin gas in Born-Infeld electrodynamics coupled to Einstein gravity, and we analyze their stability under radial perturbations. For different values of the Born-Infeld parameter and the charge, we compare the results with those obtained in a previous work for Maxwell electrodynamics. The stability region in the parameter space reduces and then disappears as the value of the Born-Infeld parameter is modified in the sense of a larger departure from Maxwell theory.Comment: 9 pages, 6 figures; v2: improved versio
    corecore