27,633 research outputs found

    Comment on "Secure direct communication with a quantum one-time pad"

    Full text link
    In the paper [Phys. Rev. A \textbf{69}, 052319 (2004)], a quantum direct communication protocol is proposed which is claimed to be unconditionally secure even for the case of a noisy channel. We show that this is not the case by giving an undetectable attack scheme

    The state space of short-range Ising spin glasses: the density of states

    Full text link
    The state space of finite square and cubic Ising spin glass models is analysed in terms of the global and the local density of states. Systems with uniform and gaussian probability distribution of interactions are compared. Different measures for the local state density are presented and discussed. In particular the question whether the local density of states grows exponentially or not is considered. The direct comparison of global and local densities leads to consequences for the structure of the state space.Comment: 18 pages (including 6 figures); submitted to Z.f.Physik

    Einstein-Born-Infeld on Taub-NUT Spacetime in 2k+2 Dimensions

    Full text link
    We wish to construct solutions of Taub-NUT spacetime in Einstein-Born-Infeld gravity in even dimensions. Since Born-Infeld theory is a nonlinear electrodynamics theory, in leads to nonlinear differential equations. However a proper analytical solution was not obtain, we try to solve it numerically (by the Runge-Kotta method) with initial conditions coinciding with those of our previous work in Einstein-Maxwell gravity. We solve equations for 4, 6 and 8 dimensions and do data fitting by the least-squares method. For N=l=b=1, the metric turns to the NUT solution only in 8 dimensions, but in 4 and 6 dimensions the spacetime does not have any Nut solution.Comment: 8 pages, 5 figure

    Family of Hermitian Low-Momentum Nucleon Interactions with Phase Shift Equivalence

    Full text link
    Using a Schmidt orthogonalization transformation, a family of Hermitian low-momentum NN interactions is derived from the non-Hermitian Lee-Suzuki (LS) low-momentum NN interaction. As special cases, our transformation reproduces the Hermitian interactions for Okubo and Andreozzi. Aside from their common preservation of the deuteron binding energy, these Hermitian interactions are shown to be phase shift equivalent, all preserving the empirical phase shifts up to decimation scale Lambda. Employing a solvable matrix model, the Hermitian interactions given by different orthogonalization transformations are studied; the interactions can be very different from each other particularly when there is a strong intruder state influence. However, because the parent LS low-momentum NN interaction is only slightly non-Hermitian, the Hermitian low-momentum nucleon interactions given by our transformations, including the Okubo and Andreozzi ones, are all rather similar to each other. Shell model matrix elements given by the LS and several Hermitian low-momentum interactions are compared.Comment: 10 pages, 7 figure

    Aging of poled ferroelectric ceramics due to relaxation of random depolarization fields by space-charge accumulation near grain boundaries

    Full text link
    Migration of charged point defects triggered by the local random depolarization field is shown to plausibly explain aging of poled ferroelectric ceramics providing reasonable time and acceptor concentration dependences of the emerging internal bias field. The theory is based on the evaluation of the energy of the local depolarization field caused by mismatch of the polarizations of neighbor grains. The kinetics of charge migration assumes presence of mobile oxygen vacancies in the material due to the intentional or unintentional acceptor doping. Satisfactory agreement of the theory with experiment on the Fe-doped lead zirconate titanate is demonstrated.Comment: theory and experiment, 22 pages, 3 figure

    Fluorescent Silicon Clusters and Nanoparticles

    Full text link
    The fluorescence of silicon clusters is reviewed. Atomic clusters of silicon have been at the focus of research for several decades because of the relevance of size effects for material properties, the importance of silicon in electronics and the potential applications in bio-medicine. To date numerous examples of nanostructured forms of fluorescent silicon have been reported. This article introduces the principles and underlying concepts relevant for fluorescence of nanostructured silicon such as excitation, energy relaxation, radiative and non-radiative decay pathways and surface passivation. Experimental methods for the production of silicon clusters are presented. The geometric and electronic properties are reviewed and the implications for the ability to emit fluorescence are discussed. Free and pure silicon clusters produced in molecular beams appear to have properties that are unfavourable for light emission. However, when passivated or embedded in a suitable host, they may emit fluorescence. The current available data show that both quantum confinement and localised transitions, often at the surface, are responsible for fluorescence. By building silicon clusters atom by atom, and by embedding them in shells atom by atom, new insights into the microscopic origins of fluorescence from nanoscale silicon can be expected.Comment: 5 figures, chapter in "Silicon Nanomaterials Sourcebook", editor Klaus D. Sattler, CRC Press, August 201

    The HypHI project: Hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams at GSI and FAIR

    Full text link
    The HypHI collaboration aims to perform a precise hypernuclear spectroscopy with stable heavy ion beams and rare isotope beams at GSI and fAIR in order to study hypernuclei at extreme isospin, especially neutron rich hypernuclei to look insight hyperon-nucleon interactions in the neutron rich medium, and hypernuclear magnetic moments to investigate baryon properties in the nuclei. We are currently preparing for the first experiment with 6^6Li and 12^{12}C beams at 2 AGeV to demonstrate the feasibility of a precise hypernuclear spectroscopy by identifying Λ3^{3}_{\Lambda}H, Λ4^{4}_{\Lambda}H and Λ5^{5}_{\Lambda}He. The first physics experiment on these hypernuclei is planned for 2009. In the present document, an overview of the HypHI project and the details of this first experiment will be discussed.Comment: 5 pages, 2 figures, French-Japanese symposium 2008, Paris (France
    corecore