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Abstract

A Ti—guard G in a rectilinear polygon P is a tree of diameter k& completely contained
in P. The guard G is said to cover a point « if « is visible (or rectangularly visible)
from some point contained in (. We investigate the function r(n, k, k), which is the
largest number of Ty—guards necessary to cover any rectilinear polygon with h holes
and n vertices. The aim of this paper is to prove new lower and upper bounds on
parts of this function.

In particular, we show the following bounds:

1. 7(n,0,k) < L#J, with equality for even k

2. r(n,h,1)= L%J

3. r(n, h,2) < |2].

These bounds, along with other lower bounds that we establish, suggest that the
presence of holes reduces the number of guards required, if & > 1. In the course of
proving the upper bounds, new results on partitioning are obtained.

*Hungarian Academy of Sciences, Budapest, Hungary. Part of this work was done while the first author was
with Vanderbilt University, Nashville.

**Freie Universitat Berlin, Institut fiir Informatik, Takustr. 9, D-14195 Berlin, Germany. Part of this work
was done while the second and third authors visited Simon Fraser and Vanderbilt.

***Simon Fraser University, Burnaby, British Columbia, Canada. The forth author was supported by the
Natural Sciences and Engineering Research Council of Canada under grant number OGP0046218.

t4Work of the second and third author was supported by the ESPRIT Basic Research Action No. 7141
(ALCOM II).


https://core.ac.uk/display/199414473?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

Given two points x and y in a rectilinear polygon P, the points x and y are called
rectangularly visible, denoted xoy, if the smallest aligned rectangle R(x,y) spanned
by x and y is contained in P [8]. This is a more restrictive notion than the usual
visibility, where one only requires that the line segment (x,y) is contained in P.

In this paper we study the following (rectangular) visibility problem: Let P
be a rectilinear polygon with h holes on n vertices. How can one cover P by Tj—
guards? Here, a Ty—guard in P is a tree G that has graph-theoretic diameter £ and
is rectilinearly embedded in P. The region V(') covered by such a guard is the set
of all points rectangularly visible to G: V(G) = {& € P | Jy € G such that xoy}.
A collection {G},7 € I of Ty—guards covers P if | J,.,; V(G;) = P.

Let us define the following functions:

r(P, k) = min{p|3 aset of p Ty—guards
that cover P}
r(n,h,k) = max{r(P,k)| P is a rectilinear polygon

with n vertices and h holes}

Further, let g(n, h, k) be the function analogous to r(n, h, k) defined for general
polygons with the usual visibility notion. The first result concerning these functions
is Chvatal’s classical Art Gallery Theorem, which in our notation reads ¢g(n,0,0) =
L%J . After this result, many combinatorial and algorithmic variations of this problem
have been studied; most of these variations can be found in [10] and [11]. For general
polygons, it is known that ¢g(n,0,k) = Lﬁj [12] and g(n,h,0) = L”SL}LJ [6], [2].
Throughout this paper we use the following non-standard convention: L%J is the
set to be 1 for 0 <n < m.

In rectilinear polygons the situation is quite different. For instance, for point
guards (To-guards), it is known that r(n,,0) = |2| [7], [4]. This is unusual in
that the number of holes does not affect the maximum number of guards required.
However, for line guards (7Ti—guards) holes make the problem harder: it is known
that r(n,h,1) > L%J [14]. This bound is tight for h = 0 (i.e., 7(n,0,1) =
| 2242 1) [1]. So what is the correct bound for line guards, and what about general
Ti—guards? This paper answers the first question and begins to address the second.

We begin with some definitions and coventions.

We use the term (n, h)—polygon to denote a rectilinear polygon with A holes and
a total of n vertices. Such a polygon is said to be in general position it no two reflex
vertices can be joined by a horizontal or vertical line segment lying in the interior of
the polygon. A short case analysis shows that by perturbing the vertices of a polygon
P that is not in general position, we can obtain a polygon P’ in general position
such that a covering of P’ by Ty—guards implies a covering of P by Ty—guards. We
henceforth restrict our attention to polygons in general position.

The rectangular decomposition of an (n,h)—polygon P is a partition of P into
rectangles by extending a horizontal chord into the polygon from every reflex vertex
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Figure 1: Rectangular decomposition and R-graph

(see Figure 1). The number of rectangles in this decomposition is %52 + h (if the
polygon were not in general position this number would be smaller). We define the
R—graph of P, denoted R(P) (or simply R when P is understood), as a directed
graph where each vertex corresponds to a rectangle of the rectangular decomposition
of P, and an arc is directed from node A to node B iff they correspond to adjacent
rectangles and the chord separating these rectangles forms an entire side of B. The
direction of these arcs gives us some visibility information. R—graphs are similar to
the H—graphs of O’Rourke [9]. The undirected version of R is denoted R.

For any pair of neighboring rectangles in a rectangle decomposition there is one
vertical polygon edge which is a vertical boundary for both. Depending whether
this edge is the left (or right) boundary of both rectangles we will call the rectangles
(or their corresponding nodes in R(P)) left (or right) neighbors. The remaining
terminology about rectangle decompositions should be self-explanatory (compare
with Figure 1):

lower neighbor
upper neighbor
indegree

B is a lower neighbor of A),
(' is an upper neighbor of A),
indeg(C) = 1),

outdegree outdeg(A) = 3),

degree (deg(D) = indeg(D) + outdeg(D) = 3).

We note that the property of being a left neighbor is symmetric, in contrast to
the property of being a lower neighbor.

The rest of the paper is organized as follows. The next section provides construc-
tions which establish a lower bound for every value of r(n, h, k). The third section
contains a proof that r(n,0,k) < Lﬁj, and that equality holds for even k. One fea-
ture of our proof is that it provides a procedure for partitioning a simply-connected
orthogonal polygon into at most Lﬁj polygons of size at most 2k + 6; this gener-
alizes results in [9], [3] for & = 0. The fourth section shows that the lower bound

e =



Figure 2: Lower bounds for polygons with no holes

Figure 3: Lower bounds for even k

for line guards is tight and that r(n, h,2) < L%J The last section is a summary and
discussion of future directions.

2 Lower bounds on r(n,h,k)

In this section, we establish the following lower bounds on r(n, h, k):

L”kffj even k
Py b k) > {2 g
] edd k>

These bounds are valid only for certain relationships of n/h, and k, as detailed later.

We begin with the L”kffj bound for even k. This bound is valid for % > k4 6;

this condition may be thought of as “having enough vertices per hole to make it
interesting.” Note that ”h;4 must be at least four, because each hole must have at
least four vertices. Also, it is already known that r(n,h,0) = L%J for £ =0 [4], so
we need only consider k& > 2.

Figure 2 shows examples of infinite polygon classes that establish a lower bound
of Lﬁj for h = 0. The figure shows examples for £ = 2, k& = 4, and k = 6;
these examples consist of

_n_

747 spiral arms joined in a row; one guard is needed for
each arm. Examples for larger k are made by increasing the number of turns on
each spiral arm (one more turn per each increase of two in k). Examples for larger
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Figure 4: The 1-pinwheel and the 3—pinwheel

n are made by joining more arms to the polygon. Holes made be added to these
examples in the following manner: find a spiral arm that does not contain a hole
(here we use the property that 7 > k +4), shorten that spiral by one turn, and add
a rectangle in its end. This operation increases n by two and & by one, leaving the
numerator (of L”kffJ) unchanged, and ensures that each arm still requires its own
guard. Examples of this construction are shown in Figure 3 for n = 36,h = 3,k = 2
and n = 34,h = 2,k = 6. The class of polygons thus described establishes the
L”kffj lower bound.

It remains to show lower bounds for odd k. Note that all both of the bounds that
we wish to show (one for k& = 1 and 3, and another for k& > 5 both simplify to L;’:j{gj
for h = 0. We first establish this bound, and describe the general construction
method for odd k.

Let the term t—pinwheel denote the (8t 4+ 12,0)—polygon formed by connecting
four spiral arms of ¢ turns in “pinwheel fashion”, as illustrated in Figure 4 for ¢t = 1
and t = 3. We will construct larger polygons from pinwheels by an operation that
we call grafting. Grafting consists of clipping one of the spiral arms from a pinwheel,

and attaching this fragment to another polygon at the first turn of one of its spiral

arms (with the restriction that this spiral arm has not been grafted to before). A
polygon which is formed by successively grafting only t—pinwheels to a —pinwheel is
called a t—growth. Figure 5 shows two 3—growths, the first the result of one grafting
operation and the second the result of two.

In any t—pinwheel or t—growth, the vertices at the end of each spiral arm (one for
each arm) form an independent set with respect to paths of length 2¢ + 1 inside the
polygon. Thus, no Ty;_;—guard can see two of these vertices. To get lower bound
examples for odd k and h = 0, we set k = 2t — 1 (t = kZi) Any (kzi)fgrowth
resulting from j graftings has 35 4+ 4 spiral arms (thus requiring 35 4+ 4 Ty—guards)
and n = (8t+12) 4 j (614 10) = (4k 4+ 16) + j(3k + 13) vertices. These growths thus

give the desired L;’:jéj lower bound.

To establish the general {%J bound, we start with the (holeless) (k%l)f

growth and add holes in the same fashion that we did for the even—k examples: find
an empty spiral arm, shorten it by one turn, and insert a rectangle. Once again




Figure 5: 3—growths

we have increased n by two and h by one without changing the number of guards
required. An example of this construction is shown in Figure 6 for n = 100,h =
4,k = b (requiring 10 Ts—guards). This establishes the bound if the “enough vertices
per hole” condition of % >k 4+ 6% is satisfied.

Figure 6: A 3-growth with holes added

For k = 3, we wish to show a lower bound of L%J We start, as expected,

with 2-growths, but to add a hole we increase the number of turns on a spiral arm
by one, and insert an L-shaped hole that sits inside this turn (see Figure 7 for an
example). This process adds 8 vertices and 1 hole (3An—2Ah = 22) but the polygon
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now requires one extra guard, which bears out the formula. This hole insertion may
be carried out as long as % > 191.

Figure 7: Example for k =3

For k =1, the bound of L%J is established by starting with 1-growths and
adding rectangular holes in the ends of empty spiral arms [14]. Fach hole insertion
adds 1 hole and 4 vertices, and necessitates 1 extra guard. This construction is valid
for 2 > 9%.

3 Upper bound on r(n,0,k)
In this section, we prove the following upper bound:

Theorem 1 r(n,0,k) < Lknﬂj

We actually prove a stronger statement

Theorem 2 Any (n,0)—polygon in general position can be partitioned into Lﬁj
simply-connected rectilinear polygons of at most 2k + 6 vertices.

We recall once more that if n < £ + 4 then we have to count one for Lﬁj rather

than zero. The following lemma and Theorem 2 imply Theorem 1.

Lemma 3 Any simply-connected rectilinear polygon of at most 2k + 6 vertices can
be covered by one Typ—qguard.

Lemma 3 can be proved easily by induction on k.

Now it is sufficient to give a proof of Theorem 2 for a polygon P with n > 2k 4+ 8
vertices.

We let the term cut denote either a chord of the horizontal or vertical rectangular
decomposition of P or the L-shaped union of two line segments joining two reflex



vertices. We prove Theorem 2 inductively, using cuts to subdivide the polygon P.
A cut subdivides P into two rectilinear subpolygons of ny and ny vertices such that
n1 + ny = n 4 2; we refer to such a cut as a (ny,ng)—cut. Such a cut will be called

good if Lk”ﬁj + Lk”ﬁj < Lk”ﬂj, i.e. if the inductive argument can be applied.

Lemma 4 Let n,ny,ny be even numbers with n > 2k +8 andny +ny =n+2. An
(ny,n2)—cut of an (n,0)—polygon is good if one of the following conditions holds:

(i). ny <2k +6 and ny <2k +6
(ii). ny > k+4 and ny > k+4 and ny Z0 or 1 (mod k +4)
(tii)). ny > k+4 and ny > k+4 and ny 20 or 1 (mod k +4)
(iv). nn =ny =1 (mod k 4 4)
Proof: (i): [ 4 [ =1+1= 28] < | 2],
(ii),(iii),(iv): Let «; be the residue n; (mod k + 4). Then in all cases we have
a1 + ag > 2. Moreover k+4 < ny and k + 4 < ny holds in case (ii) and (iii)

by assumption and in case (iv) because otherwise nq, resp. ns (as the number of
vertices of Py, resp. P,) would be 1. Thus we get

) + L) = L] + ] < [ = o] < Ll

Corollary Let n,nqi,ny be even numbers with ny +ny = n+ 2, ny > k+ 4 and
ne —2 > k+4. If an (n,0)—polygon has an (n1,nq)—cut and an (ny +2,n9 — 2)—cut
then at least one of them is a good cut.

Usually we will apply this corollary in a situation where the region between the
two cuts is a rectangle. We use the term consecutive cuts to refer to such a pair of
cuts.

Proof of Theorem 2. As P is an (n,0)-polygon, the R—graph R(P) is a tree
with r = % nodes, and therefore it has a node R such that after deleting it, the
size of any connected component is at most 7 = ”4;2. In terms of the polygon this
means that deg(R) horizontal cuts partition the polygon into deg(R) + 1 parts: the
rectangle R and polygons Pi, ..., Pygry with ny, ... ngeyr) vertices such that each
n; 1s at most 2 - % + 2 = ”"2'2. Since any cut creates two new vertices we have
E?igl(R) n; =n+2-deg(R) — 4. Transforming this equality as follows

—n; = —n+ Eje{17...deg(R)}\{i} nj+4—2-deg(R) and combining it with
2n;, < n+2 we obtain

Now, we have the three possibilities: R has 2, 3 or 4 neighbors.
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Figure 8: Illustration of Case B

Case A: Suppose that deg(R) = 2 and assume w.l.o.g. n; < ns.
Considering the two cuts individually we have an (ny,ng+2)—cut and an (ny+2,n2)—
cut. If moreover ny > k + 4 then by the corollary at least one of the cuts is
good. Otherwise, it ny < k 4+ 4 then by the inequality derived above we get
ng < np4+6—-—2-2<k4+44+2 < 2k+6. Thus, the (ny + 2,n2)—cut will be
good by Lemma 4 (i).

Case B: Suppose that deg(R) = 3 and assume w.l.o.g. (by symmetry) that
Py (resp. P> and P3) meets R via a left upper (resp left lower and right upper)
neighboring rectangle.
By the above discussion, we know that n; 4+ ny + ng = n + 2 and n; < n; + ny, for
any permutation (¢, 7, k). Clearly, we have an (ny, ny 4 ng)—cut, an (nz, ny + ns)—cut
and an (ns,nq + ng)—cut, but, there is also a fourth (ns 4+ 2,n1 + ng — 2)—cut which
starts vertically from A down to the horizontal edge thru C or its extension (see
Figure 8 for illustration of the typical situations).

Subcase B.1: Suppose that ng > k 4 4.
If moreover ny +ny —2 > k+4 then by the corollary the third or the fourth cut will
be good. Otherwise, if ny +ny—2 < k44 then we have ng < ny+ny < k+6 < 2k+6
and hence the fourth cut is good by Lemma 4 (i).

Subcase B.2: Suppose that ny < k44 and one of the following seven conditions
holds:
a) ny < k+4; then ny + n3 <2k 46 and ny < ny + ny < 2k + 6. Thus the first cut
is good by Lemma 4 (i).
b) ny < k 4+ 4; then analogously the second cut is good.
c)ng > k+4and np > k44 and ny = 0 (mod k + 4); then (ny + n3) #
0 or 1 (mod k4 4) and the second cut will be good by Lemma 4 (iii).
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d) ny > k+4and ny > k44 and ny = 0 (mod k + 4); then (ng + n3) #
0 or I (mod k+4) and the first cut will be good by Lemma 4 (iii).

e)ny > k+4and ng > k+4 and ny 0 or 1 (mod k + 4); then the first cut will
be good by Lemma 4 (ii).

f) ni > k+4and ny > k+4 and ny Z 0 or 1 (mod k + 4); then analogously the
second cut will be good.

g)ni > k+4and ny > k+4and ny =ny =1 (mod k+4) and n3 < k + 3; then
the first cut will be good by Lemma 4 (iii).

Subcase B.3: Suppose none of the above holds, this means we have ny = ny =
1 (mod k+4),ns =k+3
We will find in each possible configuration either a cut with one resulting subpoly-
gon of size k4 7 or a pair of consecutive cuts.
We call two reflex vertices opposite to each other if they rectangularly see each other
and the edges incident to them (considered as rays emanating from these vertices)
represent all 4 main compass directions.
Observe that in the case of two opposite reflex vertices, as well as in the case of two
neighboring reflex vertices which both rectangularly see a third reflex vertex, one
finds consecutive cuts.

Subcase B.3.1: (' is right of B

This is either the left or the right configuration shown in Figure 8. We consider the
highest reflex vertex D below the horizontal line thru €' such that D is visible both
from A and B. If there are two such vertices take, say, the left one. Given there
is no such vertex the vertical line extensions thru A and B define consecutive cuts.
But if we have a vertex D we also have consecutive cuts by the above observation.
Note that in all these cuts the subpolygons containing Ps have size > k45 and the
remaining parts have size > k + 5 as well, since each contains P, completely. Thus,
based on the corollary at least one of the cuts is good.

Subcase B.3.2: C is left of A.
It C rectangularly sees the upper neighbor of A, then we connect ' with this neigh-
bor (even if it is convex) by an L-shaped cut and obtain a subpolygon containing
Ps of size k + 7. Otherwise there must be a reflex vertex in P; which is opposite to
A and we are done.

Subcase B.3.3: (' is right of A and left of B.
In this case we can apply the same argument as in subcase B.3.2 to P, with the

roles of A and € exchanged.

Case C: Suppose that deg(R) = 4 and assume w.l.o.g. that P, and P, (resp.
P; and Py) are left (resp. right) neighbors of R. Since Y.°_ n; = n 4 4 at least one
of the subsums ny + ny or n3 + ny is less than or equal to %. By symmetry, we
can assume that this holds for the subsum n3 + ny. Then there is an L-shaped cut
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such that the polygon P on the right side of this cut has ns 4+ n4 — 2 vertices and
consists of P53, Py and a portion of K. Now the analysis of Case B can be applied,
with P taking the place of P5 in that analysis.

4 Upper bounds on r(n,h,1) and r(n,h,?2)
In this section we will prove the following result.

Theorem 5 L%J
polygon.

Ti—guards are always sufficient to cover any rectilinear (n, h)-

In fact we prove that these guards can be chosen to be polygon edges or edge
extensions. Moreover, in the whole section we will deal with the stronger definition
of orthogonal visibility: a point z in a polygon P is othogonaly visible from a Tj—
guard (k > 1) G if there is a line of G such that the perpendicular from X to this
line is contained in P.

Lemma 6 Let Ry and Ry be adjacent rectangles in R separated by the extension of
some horizontal polygon edge e. Then the following holds:

(i). If Ry is an upper (resp. lower) neighbor of Ry and the arc connecting them is
directed from Ry to Ry then Ry is the only upper (resp. lower) neighbor of Ry .
Consequently, if indeg(Ry) = 2 then outdeg(Ry) = 0.

(ii). If G is a Ti—guard on the edge e and its extension then G can watch any
rectangle R which can be reached by a directed path in R starting from Ry or
R.

Proof: (i). This follows from the assumption about the general position. (ii). We
observe that according to (i) any directed path in R is also strictly directed in the
geometrical sense (either upwards or downwards). Furthermore on a directed path
the rectangles get more and more narrow.

Lemma 7 If RoR:...R,, is a directed path in R and R,,11 is another rectangle
with an arc directed to R, then there is a vertical Ti—guard covering all rectangles

Proof: Note that R,, and R,,;; have a vertical polygon edge e in common. Since
the path from Ry to R, is strictly directed in the geometrical sense with the rec-
tangles becoming more and more narrow, e can be extended to Kj.
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We define the frame of R to be the largest subgraph F such that for every vertex
Rin F, degp(R) > 2. If there isn’t any nonempty subgraph F fulfilling the above
condition (i.e. if R is a tree) then we define some arbitrary fixed leaf of R to be
the frame. Thus, R consists of its frame and some attached trees. Denote by T
the set R\ F of non—frame nodes. For any R € T there is a unique path p(R) in
R connecting it to the frame. A node R € T with degree > 3 is called a primary
branch if for any R’ € T such that R € p(R’), R is the first node of degree > 3 on
p(&).

Let Ry € T be a leaf and p(Ry) = RoRi... R, with R, € F. We define
the branching distance of Ry to be the minimal number [ (1 < 1 < m) such that
deg(R;) > 3, or m if there is no such number.

Let Gy,...,G) be a family of Ti—guards in an (n, h)—polygon P and D a recti-
linear region covered by them (called a district of the guards). Usually, D will be
smaller than the maximal possible region covered by G, ..., G;. Deleting D from P
we obtain a number (say ¢’) of connected regions which are (nq,hy),..., (ng, he)—

polygons denoted by Pi,..., P..

The deletion of D will be called a reduction if [ + Eflzl L?’”i+146h"+4j < L3”+146h+4j, i.e.

if the deletion allows to apply induction. Note, that this definition also makes sense

if D is the whole polygon: then we have ¢ = 0, the sum over an empty set is also
0 and we get [ < L%J. In the proof we will show that in most situations one
can find a reduction by a district of a single guard (i.e. [ = 1). There will be only
one special geometrical configuration where a reduction by a district of two guards
1S necessary.

The following measures gain and gain™ will help to formulate sufficient condi-
tions for a district to cause a reduction. Using the notations above we define

gain(D) := 3(n—n")+4(h — 1)+ 4(1 — )

where n/ = Ec/ ng, h' = Eflzl h;. Furthermore let «; be the residue 3n; + 4h; + 4

=1
(mod 16) for any 1 < < ¢’. Then we define

!

gain"’(D) = 3n—n")+4(h—0)+4(1 - )+ EC: o;

=1

Lemma 8 Let D be a district of a family of Ty—guards Gy, ..., Gy in a polygon P.
If gain}(D) > 1-16 then the deletion of D is a reduction.

Proof: We will make use of the fact that LWJ = LW]

| 3n; + 4h; +4 161 S| 3n; 4 Ah 4 — o
/ AL B i
+Z{ 16 J = {16J+Z{ 16 J
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B B L S

- 16

< gain]";(D) +3n' + 40" + 4 — Eflzl o;
- 16

- 3n+4h +4

= |7 16

It will be very helpful to represent gain(D) using the number r = 2 +h — 1 of
nodes in R(P). Thus n =2(r —h 4+ 1) and n’ = 2(+' — b’ 4+ ¢/) where ' is the total
number of nodes in the graphs R(F;), 1 < ¢ < ¢ and we get

gain(D) =6(r —r") = 2(h — h") + 10(1 — ¢).

The triple (6, 6p,0.), where 6, =r — 7', by =h —h', 6, =1 — ¢, will be called the
type of D.

Lemma 9 (Expansion Lemma) Let G be a horizontal Ty —guard in a polygon P
and D a district of G'. Let Py be a polygon representing a connected component of
P\ D, and e be a horizontal edge that bounds Py from above and is shared between
P, and D. Let R be the rectangle of Py that contains e. Let D be the expansion of
D by R and all rectangles reachable from R on directed paths in R(Py). If the edge
e is (orthogonally) visible from G (see Figure 9, where G runs across the top of the
figure), then D is also a district of G and the following holds:

(i). gain(D) > gain(D) + 6

(ii). if indegp, (R) = 0 then gain(D) > gain(D) + 8.

Proof: Since ¢ covers the whole horizontal width of R, it follows from Lemma 6
(7¢) that any rectangle reachable on a directed path in R(F) from R will be covered
by G. Let S be the subtree of R(P;) formed by R and all nodes reachable from
there on a directed path. Let B denote the set of rectangles in S that have two lower
neighbors and b = |B|. The tree S has at least 2b 4+ 1 nodes. If we add by breadth
first search the rectangles of S to D starting with R, then for each rectangle from
B either the number of connected components of the remaining polygon increases
by 1 (say, by times) or the number of holes decreases by 1 (b = b — by times). In
contrast, adding a rectangle which has no two lower neighbors neither changes 6
nor increases the number of connected components. So we have

gain(ﬁ) > gain(D)+6(2b+1)—10b; —2by > gain(D)+(12—10)b+6 > gain(D)+6
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Figure 9: Illustrating Lemma 9

Now, suppose that indegp, (R) = 0. We consider the three possibilities outdegp, (R) =
0, 1or2.

If outdegp, (R) = 0 then Py consists of R only and adding R to D we reduce the
number of connected components of P\ D by one, giving gain(D) = gain(D) + 10.
If outdegp,(R) = 1 then let R’ be this unique neighbor of R in P;. Adding R
to D we get a district D" with gain(D') = gain(D) + 6 and, moreover, we can
apply this lemma once more to D’ and the rectangle R in P\ D'. Thus we get
gain(D) > gain(D') + 6 = gain(D) + 12
Finally, if outdegp, (R) = 2 then R € B and thus b > 1. Our claim follows immedi-
ately from the inequality in the first part of the proof.

The proof of the theorem now follows from the next three lemmata which show
that each non-trivial polygon is reducible.

Lemma 10 If Ry € T is a leaf with branching distance > 3 then there is some
reduction with R in the reduction district.

Proof: Let Ry, Ri, Rz be the first three rectangles on the path p(Ry). Since
deg(R1) = deg(R2) = 2, the deletion of the region D = Ro U Ry U Ry neither
disconnects the remaining polygon nor changes the number of holes and we get
gain(D) = 6-3 = 18. Hence, it is sufficient to show that there is a guard G covering
D. Let us consider the directed versions of the edges {Ro, R1} and { Ry, Ry }.

o If both arcs are directed from R; to Ry and R, then a guard placed on a
horizontal boundary of Ry covers D by Lemma 6 (¢z).
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o If the two arcs form a directed path then a guard on a horizontal boundary of
the first rectangle of the directed path will cover D by Lemma 6 (7).

o If both edges are directed towards R, then there is a vertical guard covering

D by Lemma 7.

Lemma 11 If all leaves in R have branching distance < 3 and R is a primary
branching then there is a reduction such that R or a part of R is in the reduction
district.

Proof: The proof of this lemma is much more complicated than the proof of the
preceeding lemma. It requires a rather long case inspection and several tricky argu-
ments. However this is not surprising because both lemmata together yield a new
proof for simply connected polygons (cf. [1]).

Let R be a primary branching with neighbors Ry, Re, Rs (and possibly Ry, if
deg(R) = 4) in R . W.lo.g. we can assume that Ry is the (unique) neighbor of
R on the path p(R) and, moreover, that Ry is a left lower neighbor of R. By the
assumption there are leaves Lo, Ly (and possibly L4) such that for any ¢ > 2 we
have either L; = R; or L; is a neighbor of R; and deg(R;) = 2. Let N be the set of
rectangles consisting of Ry, Rs, (R4 if deg(R) = 4) and the leaves Lq, Ls, (L4) pro-
vided they do not coincide with some R;. We have to distinguish the following cases:

Case A: Suppose that for all rectangles in N there is a directed path from R to
them.
Then we choose a horizontal boundary of R for placing the guard and by Lemma 6
(1) this guard covers a district D consisting of R and all rectangles from N. Clearly,
the type of this district is (é,,0,0) and 6, > 3. This implies gain(D) > 18 and we
are done.

Case B: Suppose that for some iy > 2 there is an arc R;; — R in R ji.e. R, is
wider than R.
W.l.o.g. we may assume that ¢¢ = 2. Furthermore we can assume that R, is an
upper neighbor of R, because otherwise by Lemma 6 (¢) Rz would be the only lower
neighbor of R contradicting that R is also a lower neighbor.

Subcase B.1: Suppose that L, = R,.
Since deg(R) > 3 and since there is only one upper neighbor, Rs has to be a right
lower neighbor. Dependently on whether Ly # R3 or L3 = Rs, we place a guard
on the extended common vertical edge of L3 and R3 or on the extended common
vertical edge of R and Rs and define a district D consisting of R, Ry, R and Ls.
Thus, the type of D is (4,0,0) or (3,0,0) and we are done.
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Figure 10: Hlustration of subcase B.2

Subcase B.2: Suppose that Ly, # R,.
Placing a guard GG on the extended horizontal edge which separates Ly from Ry we de-
fine a district D consisting of these two rectangles, see Figure 10. Since gain(D) = 12
does not suffice, we apply the expansion lemma. Indeed, the whole upper boundary
of R is orthogonaly visible from (. Hence adding to D the rectangle R and all
rectangles reachable from R via a directed path in R we get a new district D with

gain(D) > 12 +6 > 16 and we are done.

Case C: Suppose that neither case A nor case B are valid, i.e. for any ¢ > 2
there is an arc from R to R; in R and there is some i > 2 such that L;, # R,
and the arc between them is directed from L;, to R;,. Again, w.l.o.g. we assume
19 = 2. Let e be the common vertical polygon edge of R and Ry and A the lower
(resp. upper) polygon vertex of this edge if Ry is an upper (resp. lower) neighbor
of R. We place a vertical guard G on the full extension € of e and define a district
D dependently on whether A is a reflex vertex or not.

Subcase C.1: Suppose that A is not a reflex vertex.

Then in a first step we define a district D of type (2,0,0) consisting of Lz, Ry and
the remaining segment (i.e. below R3) of the edge e, see Figure 11 — the left picture.
Denoting this segment by ¢/, it is an edge of the polygon P’ = P\ (L2 U Ry). Let ¢
be the rotation of the plane by 90° such that €’ = p(¢€') is a top edge in the rotated
polygon P" = o(P'), see Figure 11 — the right picture.

Now, we consider the horizontal rectangular decomposition of P” (i.e. the rota-
tion of the vertical rectangular decomposition of P’) and denote by S the rectangle
containing €¢”. Restricting the guard G to P’, resp. via rotation to P”, it is placed
on the top edge €” of S. So we can apply the expansion lemma in this situation and
we get a district D with gain(D) > gain(D) + 6 = 18.

The trick of first cutting out a district of small gain, then rotating the polygon
and applying the expansion lemma will be used several more times. Since in con-
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Figure 11: Hlustration of subcase C.1

trast to the original expansion lemma, we expand here the district in a horizontal
direction, we will refer to this trick as the horizontal expansion lemma.

Subcase C.2: Suppose that A is a reflex vertex.
We consider the horizontal polygon edge f which determines the upper boundary of
the rectangle R and denote the right polygon vertex on this edge by B, see Figure
12. Let S be the rectilinear rectangle spanned by A and B (in general, S is not a
rectangle of the rectangular decomposition).

Subcase C.2.1: Suppose that S C P, i.e. there are no vertices or edges of P
in the interior of 5.
We define a district D consisting of Lo, Ry and S. Clearly, this district is covered
by (. Since general position was assumed, one can be sure that the deletion of
G neither disconnects the remaining region P’ = P\ D nor changes the number
of holes and, furthermore, there is a cut separating the (8,0)—polygon D from the
(n’,h’)—polygon P’. This implies n’ + 8 = n + 2 or equivalently é,, = 6 and conse-
quently gain(D) = 36, + 46, + 46. = 18.

Subcase C.2.2: Suppose that S  P.

Subcase C.2.2.1: Suppose that R, is a right neighbor of R.
We will show that summing up all current assumptions we will obtain the following
unique situation:
R has two right neighbors Ry and Rs both of degree two. Furthermore, we have the
following arcs in R: Ly — Ry «— R — R3 « Ls. In fact, if Ry were the only right



18

Figure 12: Illustration of subcase C.2.1: S C P

neighbor of R then either subcase C.1 (A is not a reflex vertex) or subcase C.2.1
(S € P) would apply. Hence, there is a second right neighbor R3 and since case B
is not valid we have an arc R — Rj3. Furthermore if R; were a leaf or if Ry # Ls
and Rs — La the vertex A would not be reflex and subcase C.1. would be valid.
So we obtain the configuration Ly — Ry «+— R — R3 « L3 and a guard placed on e
and 1its full extension vertically crosses all these rectangles. Thus, defining a district
consisting of Ls, Rz, Rs and L3 we obtain a reduction of type (4,0,0).

Subcase C.2.2.2: Suppose that R, is a left neighbor of R.
Since Ry is a left lower neighbor of R, R, must be a left upper neighbor. This
subcase is the hardest one. We will analyse it separately as Case E. It will be very
useful to exclude several configurations on the right side of R before (Case D). To
do this, let N’ be the set of all right neighbors of R (i.e. Rs and possibly Ry, if
deg(R) = 4) and of the leaves Ls (L4) if they do not coincide with Rs (R4).

Case D: Suppose we have all assumptions made in subcase C.2.2.2 and more-
over | N" |> 2.
We again examine the cases A, B, and C taking into account the right neighbors only.

Subcase D—A: Suppose that all rectangles in N’ are reachable from R on di-
rected paths. Consider the L—cut starting vertically from the more narrow left
neighbor of R to the opposite side of R and then turning to the right side, see Fig-
ure 13 where R, is more narrow than ;. This L—cut removes an m—gon D with
m = 2- | N'| 44 > 8 that can be covered by a horizontal guard in R. So we get
6, > 6, 6, = 6. = 0 and consequently gain(D) > 18.

Subcase D—-B: If there is a right neighbor R;, with an arc R;; — R in R then

this is a proper subcase of Case B and so we are done.
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Figure 13: Hlustration of subcase D-A

Subcase D-C: If there is a right neighbor R;, with arcs R — R;, « L;, we are
in the situation of Subcase C.2.2.1.

Case E: Suppose, we have all assumptions made in subcase C.2.2.2 and more-
over | N' |< 2 (the negation of D).
We recall that these assumptions together imply the following configuration: R has a
left lower neighbor Ry (which lies on the unique path connecting R with the frame),
a left upper neighbor Ry with an attached leaf L, such that R — Ry « Ly and
exactly one right neighbor R3 which is a leaf and we have R — Rs;. Furthermore
we know that the lower vertex A of the common vertical edge e of R, R; and R, is
reflex and that the interior of the rectangle S spanned by A and B (the right vertex
of the horizontal polygon edge bounding R from above) contains some vertex.
We place a guard onto the full extension € of e and define a first district Dy to
consist of the guard position itself plus the rectangles Ry and Ly. The vertical cut
from A (which is part of D) causes us to have either 6, = 1 and 6. = 0, or 6, =0
and 6, = —1.

Subcase E.1: Suppose that by deleting Dy we get 6, = 1 and 6. = 0.
We have gain(D;) =26 —2 =10 and in P\ D; and applying the rotated version
of Lemma 9 on both sides of of the guard position we obtain a district Dy of gain

>1042-6 > 16.

Subcase E.2: Suppose that by deleting Dy we get 6, =0 and 6. = —1.
We have gain(Dy) = 2-6—10 = 2 and get two polygons P, and P, to the left and to
the right side of the vertical cut from A. Let R; (resp. R,) be the rectangles of the
vertical decomposition of P, (resp. P,) which contain the vertical cut from A. Note
that for both rectangles one can apply the rotated version of Lemma 9, see Figure
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Figure 14: Hlustration of subcase E.2

14.

Subcase E.2.1: Suppose that in the vertical rectangular decomposition graph
of P, we have indeg(R,) # 1.
An application of Lemma 9 (¢7) to P, increases the gain by > 8 and hence we obtain
a district Dy of gain > 2+ 846 = 16.

Subcase E.2.2: Suppose that in the vertical rectangular decomposition graph

R’ of P, we have indeg(R,) = 1.
Applying twice the rotated version of Lemma 9 we get a district D consisting of
Ry, Ly, R, and R;. Note that the gain of this district is 242-6 = 14. The assumption
indeg(R,) = 1 implies that if we take a chord in P, parallel to the guard, and shift it
rightwards starting at the guard’s location, then the first vertex of P, that this chord
will encounter is a reflex vertex on the upper or lower side of R,. It is impossible
that this vertex is B because of our assumption that the rectangle S contains a
polygon vertex. Let C be the highest of all polygon vertices in the interior of S (the
left one if there are two highest ones) and let f’ be the horizontal edge turning from
C' to the right, see Figure 15. If R’ denotes the rectangle in the vertical rectangular
decomposition of P, that is placed between f and f’ then indeg(R') = 2, i.e. the
right side of R’ is either the vertical cut of B and B is a reflex vertex or the vertical
cut from the right vertex €' of f' and C’ is a reflex vertex, see Figure 16 for all
possible configurations.

Note that otherwise we would get a contradiction either to the fact that D is a
highest vertex in the interior of S or to the fact that R has exactly one right neighbor
Rs with R — Rs. Extending R’ horizontally to the left (up to R,) and adding the
extended rectangle to Dy we get a district Dy increasing &, by 1. Moreover either
0. decreases by 1 or ¢, increases by 1. In the second case we are done because we



Generalized Guarding and Partitioning for Rectilinear Polygons

Figure 15: Hlustration of subcase E.2.2

Figure 16: The four possible configurations on the right side of R’
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get gain(Dy) = gain(D;y) +6 —2 =14 + 6 — 2 > 16. In the first case we have only
gain(Dy) = gain(Dy) +6 — 10 = 14 + 6 — 10 = 10. Let P, P, Ps be the three
(n1, h1)—, (na, he)—, (ns, hs)— polygons representing P\ Dy where P, is the polygon
on the right side of R’ and P, the polygon below the horizontal cut from C'. Note
that either P is a simple rectangle (Figure 16 (a) and (d)) or Rs is a leaf in the
horizontal rectangular decomposition of P; (Figure 16 (c¢)) or it can be extended
(downward) to a leaf R; of R(P1) (Figure 16 (b)).

For « € {1,2,3} let a; be the residue 3n; + 4h; +4  (modl6).

Subcase E.2.2.1: Suppose that oy > 6.
Then we get gaint(Dz) = gain(Dy) + 2?21 a; > gain(Dsz) + o > 16 and we are
done.

Subcase E.2.2.2: Suppose that oy < 6.

Now we place a second guard horizontally on the edge f and its extension. Note
that we have to find a common district of gain® at least 32. If P; is a rectangle
we add it to Dy. For the resulting district D3 we have one rectangle more and one
connected component (P;) less and hence gain(Ds) = gain(Ds) + 6 + 10 = 26.

If P, is not a rectangle we add to Dj the leaf Rs3 respectively R;. The new district
D3 has one rectangle more and the polygon P/ = Pi \ Rs (respectively Py \ R%) has
one rectangle or equivalently two vertices less. Hence, the residue o of P is a; — 6
(mod 16) > 10, and consequently gaint(D3) > gain(Ds) + 6 + of > 26.

Finally, we consider the retangle R” in the horizontal rectangular decomposition of
P, placed between the vertical cut from A" and the vertical edge from (', see Figure
17. Obviously, R" is covered by the horizontal guard and Lemma 9 can be applied.
Note that this application does not change «} and thus for the resulting district D
we get gain™ (D) > gain(Ds) + 6 4+ of > 32. This completes our case inspection.

We note that applying Lemma 10 and Lemma 11 we can reduce the problem to
polygons P such that R(P) consists only of its frame and leaves or paths of length 2
attached to the frame. In the following we show how to find a place for a reduction
in such a polygon.

We need the following definition: An extremal hole edge is a polygon edge e on
the boundary of a hole such that

1. e connects two reflex vertices and

2. in the partition of P induced by extending e in both directions until it hits
the boundary, the region containing e is simply-connected.

We remark that if a polygon has more than one hole, then among all, say,
northernmost hole edges there is not necessarily an extremal edge, see Figure 18.

Lemma 12 If a rectilinear polygon has holes, then it has an extremal hole edge.
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Figure 17: Hlustration of subcase £.2.2.2

Figure 18: No northernmost extremal hole edges
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Proof: Let us call an edge a reflex edge if it connects two reflex vertices. Clearly,
any hole of an (n, h)-polygon P has at least 4 reflex edges. Let FE} denote the set
of all horizontal reflex edges of holes in P. We show that Fj contains an extremal
edge. First observe that Fj contains a non—empty subset £ of reflex cut edges. A
horizontal reflex edge is a cut edge if both extensions to the east and the west hit
the outer boundary of P. To see that there are such edges one defines the following
hole merging procedure. One can merge two holes if an edge extension of a reflex
edge of one hits the other hole. In this case we merge the holes by adding this
one-sided edge extension as a wall to them. If the extension hits the hole itself one
adds to the hole the connected component enclosed by the hole and the one-sided
edge extension. We search through the set £} and apply the procedure whenever it
is possible. Remark that this procedure does not create new reflex edges and we are
eventually left with a polygon P’ which has at least one hole. The set of horizontal
reflex edges in P’ corresponds exactly to those reflex edges in £}. Now to find the
extremal edge in P it is clearly sufficient to show the following fact:

Given a polygon () with a distinguished horizontal edge e on the outer boundary
and the property that all horizontal reflex edges are cut edges, there is always an
extremal horizontal edge ¢’ such that in the partition of ) induced by ¢’ the simply
connected part (). containing ¢’ does not contain e.

This can be proved by induction on the number h of holes. It is true for h =1
since the hole has at least 2 extremal edges. If we have more than one hole take
any horizontal reflex edge €” and consider ().». There are two cases to distinguish.
Firstly, suppose (). is simply connected. Then if ().» does not contain e¢ we are
done, otherwise either there is another horizontal reflex cut edge of the same hole
which is extremal or choose any one of these edges, say d, and apply the induction
hypothesis to (); with the extension of d being the new distinguished boundary edge.
Given that ). is not simply connected we can apply the induction hypothesis to it
with the extension of ¢’ being the new distinguished boundary edge if e ¢ Q..

Lemma 13 Let P be a polygon to which Lemma 10 and Lemma 11 cannot be ap-
plied. W.lo.g. let e be a horizontal extremal hole edge bounding the hole from above
and let R € R be the rectangle having e on its boundary. Then there s a reduction
such that R or a rectangular part of R is in the district of the reduction.

Proof: We note that R has two lower neighbors R; and R,. If there are also upper
neighbors S7 and S of R then because e is extremal, each of them is either leaf or of
degree two and adjacent to some leaf Ly or Ly. Analogously to the proof of Lemma
13 let N be the set consisting of all upper neighbors of R and all leaves adjacent to
these neighbors. Again we distinguish three cases:

Case A: Suppose that any rectangle of N is reachable from R on a directed
path in R (note that this condition holds also if N is empty).
We place a horizontal guard onto the full extension of e. Clearly, it covers a district
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D consisting of R and all rectangles of N. Thus, the type of D is (14 |N|,1,0) and
its gain is 6 + 6 - [IN| — 2 > 4. Moreoveré)r both R; and R, the expansion lemma
can be applied, so the expanded district D has a gain > 4+ 2 -6 = 16.

Case B: Suppose that there is (exactly) one upper neighbor S; and an arc
R« Sl.
Placing a horizontal guard onto the upper boundary of S; and extending it as far as
possible we can cover R and all rectangles of N and hence we can proceed further
as in Case A.

Case C: Suppose that there is (at least) one upper neighbour S; adjacent to a
leaf L; and arcs B — 5] « L.
W.lo.g. let Sy be a left neighbor of R. Placing a vertical guard onto the common
vertical polygon edge f of R and S and its extension one can cover a district D
consisting of L1,57 and that part of R which is bounded by f on the left side and
by the extension of the left boundary of R, on the right side. So after deleting D
the remaining part of R forms together with R, one rectangle in the rectangular
decomposition and thus D is of type (3,1,0) and one has gain(D) = 16.

We close this section proving the L%J upper bound for Ty—guards. For technical
convenience in the inductive proof we introduce a slight reformulation of the bound.
For any (n, h)—polygon P we define a characteristic number y(P) as follows:

1 ¢fn=4and h=0
X(P) = { d

0 else
Theorem 14 For any (n, h)—polygon P we have r(P,2) < {%X(P)J '

To prove this theorem one goes along similar lines as in the proof of Theorem
5 where in contrast to the above proof the lemmata for reducing simply connected
parts becomes rather trivial. For reducing holes the existence of extremal edges is
also essential. Roughly speaking one can use the second arm of a Ty—guard to cover
one rectangle more.

Since we want to prove another bound than in Theorem 5 we have to change the
definitions of reductions, types and of gain. To avoid confusions with Theorem 5 we
will use the notations gaing, and 2 — reductions. (Note that the definitions depend
on the bound one wants to prove rather than on the guard type, so a more precise
notation would be gain 2] and L%J -reduction.)

Let G be a Ty—guard in an (n,h)—polygon P covering a district D and let
Pi,..., Psbethe (ny, hy),...,(ne, ho)—polygons that are the connected components

of P\ D. The deletion of D will be called a 2 — reduction if 1 + Zflzl {%X(P")J <

n+2x(P . . . . .
{%J , 1.e. if the deletion of D allows us to apply induction.



26

Define 6,,, 6,65, 6. as before and 6, = y(P) — Eflzl X(P;), i.e. analogously as
—0o. describes the increase of the number of connected components after deleting D,
—&, describes the increase of the number of connected components that are (4,0)—
polygons. For shortness, such components will be called rectangle components. The
tuple (6., 0p, 6., 6, ) will be called the 2 —type of D. Now, we can introduce the gain,
of a district as follows:

gainy(D) = b, + 26, = 2(6, — O, + 6. + by)

Lemma 15 Let D be a district of a Ty—guard G' in a polygon P. If gainy(D) > 6
then the deletion of D is a 2-reduction.

The proof of this lemma is analogous to the proof of Lemma 8. In contrast, the
following analog to Lemma 9 contains some essential differences.

Lemma 16 (Expansion Lemma) Let G be a horizontal Ty —guard in a polygon P
and D a district of G. Let Py be one of the connected components of P\ D and R,
and e be a horizontal edge that bounds Py from above and is shared between Py and D.
Let R be the rectangle of Py that contains e. Let D be the expansion of D by R and all
rectangles reachable from R on directed paths in R(Py). If the edge e is (orthogonally)
visible from G (see Figure 9, where G runs across the top of the figure), then D is
also a district of G and the following holds: Either gainy(D) > gaing(D) + 2 or
gainy(D) = gain(D) and P, \ D consists of (|S| +1)/2 rectangle components.

Proof: Let B denote the set of rectangles in S that have two lower neighbors and
b = |B|. Then S has at least 2b + 1 nodes. If we add by breadth first search the
rectangles of S to D starting with R then for each rectangle from B either the
number of connected components of the remaining polygon increases by 1 (say, by
times) or the number of holes decreases by 1 (by = b— by times). In contrast, adding
a rectangle that does not have two lower neighbors neither changes é;, nor increases
the number of connected components. Thus, after deleting all rectangles of S from
Py the number of remaining connected components (and especially the number b3
of rectangle components) is bounded by b; + 1. So we have

gain(D) > gain(D) + 2 - (|S| — by — by — b3)
Note that
|S|—bl—bz—bg226+1—bl—62—(61—|—1):261—|—262—|—1—261—62—1ZO

and the left side is equal to zero iff [S| = 20+ 1, by = 0 and b3 = by + 1. This implies
bs = (2b1 +2)/2 = (2b+2)/2 = (|S| + 1)/2, which completes the proof.

Now we will show that for any polygon one can find a 2-reduction. Obviously,
the deletion of any district with 2-type (3,0,0,0) is a 2-reduction. The following
observations will be very helpful to extend the results for Ti—guards to Ty—guards.
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Figure 19: Hlustration of the amplification lemma

Lemma 17 (Amplification Lemma) Let D be a district of a Ty—guard G and
suppose that in P\ D there is a rectangle component R (see Figure 19).

Then G can be amplified to a Ty—guard G' covering the district D' = D U R with
gainy(D') = gaing(D) + 6.

Proof: Since R was obtained by the deletion of D from P there must be a common
point A on the boundaries of P, R and D. Let [ be the perpendicular from A to
(. Because orthogonal covering is always assumed, [ is included in P and more-
over it is possible to extend [ in such a way that it crosses the entire height of R.
Clearly, (¢ together with this extended segment forms a Ty—guard orthogonally cov-
ering DU R. By extending D in this way, one more rectangle is covered, there is one
less connected component remaining, and one less rectangle component remaining.
Collectively, these changes increase the gainy by 6.

Let D be a district of a Ti—guard of type (3,0,0). If the remaining polygon
P"= P\ D is not a 4—gon then the 2-type of D is (3,0,0,0) and hence the deletion
of D is also a 2-reduction. Otherwise, if P’ is a 4—gon then P must be an 8-gon
which clearly can be covered by a Thy—guard and thus P is also 2-reducible in this
case.

Let D be a district of a Ti—guard (w.l.o.g. horizontal) of type (2,0,0), P a
connected component of P\ D and R € R(P;) such that the new expansion lemma

can be applied. Then we either get gaing(D) > gaing(D) + 2 > 6 (which implies a

2-reduction) or gaing(D) = gaing(D) =4 and all (|S|+1)/2 connected components
of P, \ D are 4-gons. In the latter case one can apply the amplification lemma to

get a district D* with gainy(D*) = gainy(D) + 6 = 10.

Lemma 18 If Ry € T is a leaf with branching distance > 3 then there is some
2-reduction with R in the reduction district.
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Proof: In this situation one can always find a Ti—guard with a district of type
(3,0,0) (see proof of Lemma 10), so we are done.

Lemma 19 If all leaves in R have branching distance < 3 and R is a primary
branching then there is a reduction such that R or a part of R is in the reduction
district.

Proof: Let us return to the case inspection in the proof of Lemma 11. In case A, B
and C.1 there are Ty guards with districts either of type (3,0,0) or of type (2,0,0)
and such that the new expansion lemma (or its rotated version) can be applied.
Taking into account the observations above, we are done with these cases and only
case C.2 remains (see Figure 12). As in the proof of Lemma 11, we start with a
vertical Ti—guard on the extension € of the edge e and a district D consisting of Ry
and Ly and the guard position. Depending on whether € disconnects the polygon or
reduces one hole, D has the type (2,0, —1) or (2,1,0). Thus the 2-type of D is either
(2,0,—1,6,) where 6, € {0,—1,—2} or (2,1,0,0). Furthermore, one can apply the
new expansion lemma on the right and on the left side of €. If (before expanding)
on one side (resp. on both sides) there is only a rectangle component, i.e. 6, = —1
(resp. 6, = —2) then the expansion on this side (resp. to both sides) removes
one (resp. two) rectangle(s) which is also a connected component and especially
a connected component being a 4—gon. Thus the extended district has the 2-type
(3,0,0,0) (resp. (4,0,1,0) ) which implies a sufficient gainy of 6 (resp. 10).

Now we can assume that D is of 2-type (2,0,—1,0) or (2,1,0,0) and hence
gainy(D) = 2. Applying the new expansion lemma on both sides of € we either
increase the gainy twice by 2 (and we are done) or we know that after this step at
least on one side there remains a rectangle component. In this case one can apply
the amplification lemma increasing the gain, by 6 and we are done.

The proof of Theorem 14 will be completed by a lemma that shows how to reduce
the number of holes.

Lemma 20 Let P be a polygon to which Lemma 18 and Lemma 19 cannot be ap-
plied. W.lo.g. let e be a horizontal extremal hole edge bounding a hole from above
and let R € R be the rectangle having e on its boundary. Then there s a reduction
such that R or a rectangular part of R is in the district of the reduction.

Proof: We switch back to the proof of Lemma 11 and note that R has two lower
neighbors R; and R,. If there are also upper neighbors Ry and R, of R then because
e is extremal, each of them is either a leaf or of degree 2 and adjacent to some leaf
Ly or L. Let us start assuming that the set N consisting of all upper neighbors of
R and all leaves adjacent to these neighbors is not empty and run trough the case
inspection under this additional assumption.
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Figure 20: Constuction of the districts D’ and E

In Case A and Case B we have a horizontal guard which first covers a district
D consisting of R and all rectangles in N. Hence D is of type (1 4+ |N|,1,0) and of
2-type (1 4+ |IN|,1,0,0). So we get gainy(D) > 2 and moreover the new expansion
lemma can be applied twice. If both applications increase the gainy by 2 we are
done. Otherwise at least one application causes a rectangle component which can
be covered by the amplification lemma, giving a sufficiently large gain.

In Case C a vertical guard will be placed onto the full extension € of the edge e
which covers first a district D consisting of Ry, L, and €. Depending on whether the
lower vertex of e is reflex or not, we have gainy(D) = 2 and D can be expanded twice
or gainy(D) = 4 with one possible expansion. Again either one gets a sufficient gaing
by the expansion or there remains a rectangle component which will be covered by
amplification of the guard.

Finally, we show how to proceed if the set N is empty. First, we place a horizontal
guard onto the upper boundary of R and define a district D = R of 2-type (1,1,0,0)
and with gainz(D) = 0. Obviously, two expansions with respect to R; and R, are
possible. Let D be the new district after the expansions, then we have gainy(D) >
gainy(D) = 0. If there is a rectangle component in P\ D we can get a sufficiently
large gainy by the amplification lemma. Otherwise both expansions increase the
gaing at least by 2 and we get gainy(D) > gainy(D) 4 2 -2 = 4. Note that we are
done if one of the expansions adds more than 2 to the gaing, so we can assume that
the application of Lemma 16 to R; (as well as to R,) increases the gain exactly by 2.
As was shown in the proof of Lemma 16 this increase is > 2-(|S|—b; — by — b3) where
S is the set of all rectangles in R reachable from R; on a directed path, b = by + b, 1s
the number of rectangles in S with two lower neighbors and b3 denotes the number
of rectangle components in the remaining polygon which is 0 in this case. Since
IS| > b4 1, the only possibility to get exactly 2 for the increase of the gaing is b =0
and |S| =1, i.e. R; has exactly one lower neighbor R} with an arc R} — R;, and R,
has exactly one lower neighbor R! with an arc R, — R,.



30

Figure 21: Ry is a rectangle component in P\ D’ but not in P\ I/

Now, we choose the extension € of the common vertical edge e of R; and R
for amplifying . Let D’ be the district of the new T,-guard consisting of D and
€ (see Figure 20, the darkly shaded region in the left picture). Again we have to
distinguish the two cases whether the lower vertex A of e is reflex or not.

Case 1: A is a reflex vertex.

Then the 2-type of D' is (3,2,0,0) or (3,1,—1,0) and thus gainy(D’) = 2. Further-

more one can expand [’ twice. Let D’ denote the district obtained in this way.

Subcase 1.1: One of the two expansions increases the gainy by more than 2 or
each expansion increases the gainy by 2, then obviously gainy(D') = 6.

Subcase 1.2: The application on the left side of € does not increase the gain,.
Then there is a rectangle component Ry in P\ D’ on the left side of €. Consider a
vertical Ty guard H on € covering a district I consisting of €, R and R;. The district
F has gainy(F) = 0, and expanding F on both sides of € one gets an extended dis-
trict F with gainz(E) > 0. Note that the rectangle Ry is a rectangle component of
P\ E (see Figure 20, the right picture), and we may thus apply amplification to ob-
tain a Th-guard covering the district &/ = EUR with gainy(E') = gaing(E)+6 > 6.

Subcase 1.3: The application on the right side of € does not increase the gains.
Then there is a rectangle component Ry in P\ D’ on the left side of &. We will
proceed as in Subcase 1.2 and we will be successful if Ry will be also a rectangle
component in P\ E. There is one (and only one) exceptional situation, namely if
Ry is a neighbor of R, (see Figure 21). Then in P\ E Ry and R, together form a
(6,0)—polygon. However, by adding the horizontal arm to H which covers Ry, we
also cover R, and hence the gaing increases by 6 (we have eliminated two rectangles
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and one connected component). We note that the exceptional situation described
above is the only one because we have D'\ £ = R,.

Case 2: A is not a reflex vertex.
Then the 2-type of D’ is (3,1,0,0) and thus gainy(D’) = 4. Furthermore, it is
possible to expand on the right side of €. One can handle this situation analogously
to Case 1, repeating the inspection of the subcases under the pretense that the
application of Lemma 16 on the left side of € increases the gainy by exactly 2.
This finishes the proof of this lemma and also the proof of Theorem 14.

5 Conclusion

We have studied generalized guarding in rectilinear polygons with holes, obtaining
general lower bounds and some specific upper bounds. We have found that in the
rectilinear world there is a strong difference between odd and even k. Surprisingly,
for k > 3, we have not found lower bounds where increasing h makes polygons require
more guards, and we in fact believe that increasing h makes polygons require less
guards. However, we are unable to establish this, and leave this question unsettled.

We note here that our lower bound constructions give the same bounds even
if the usual visibility (rather than rectangle visibility) is used, and the Tj—guards
are not rectilinearly embedded; the upper bound arguments (obviously) also hold
in this more general situation. The fourth author has previously shown that the
even-k upper bound of r(n,0,k) < Lk”ﬂj holds in this situation [13]; his result is
implied by Theorem 1.

There are many questions related to this paper which are yet to be answered.
Aside from the usual questions about tight bounds for the generalized guarding
problem both for rectilinear and general polygons, we want to mention the following:

e What is the lower bound on r(n,h, k) when 7 is small (lots of rectangular
holes)?

e Are there lower bound examples that have a different structure but illustrate
the same bounds as our constructions? We conjecture that there are no such
examples.

o What are the exact bounds for rectilinear polygons with holes expressed as
a function only of n and k7 (Wessel showed a lower bound of LMJ for

k=1 [14].) b

e To prove Lemma 3, we need only guards that are trees with at most £ edges,
while the lower bounds hold even for nonrectilinear trees of diameter k. How
can one exploit the full power of diameter-k trees to get a better upper bound?
What is the situation for guards that are paths of diameter (length) k?
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