12,290 research outputs found
Topological Transitions in Metamaterials
The ideas of mathematical topology play an important role in many aspects of
modern physics - from phase transitions to field theory to nonlinear dynamics
(Nakahara M (2003) in Geometry, Topology and Physics, ed Brewer DF (IOP
Publishing Ltd, Bristol and Philadelphia), Monastryskiy M (1987) in Riemann
Topology and Physics, (Birkhauser Verlag AG)). An important example of this is
the Lifshitz transition (Lifshitz IM (1960) Anomalies of electron
characteristics of a metal in the high-pressure region, Sov Phys JETP 11:
1130-1135), where the transformation of the Fermi surface of a metal from a
closed to an open geometry (due to e.g. external pressure) leads to a dramatic
effect on the electron magneto-transport (Kosevich AM (2004) Topology and
solid-state physics. Low Temp Phys 30: 97-118). Here, we present the optical
equivalent of the Lifshitz transition in strongly anisotropic metamaterials.
When one of the components of the dielectric permittivity tensor of such a
composite changes sign, the corresponding iso-frequency surface transforms from
an ellipsoid to a hyperboloid. Since the photonic density of states can be
related to the volume enclosed by the iso-frequency surface, such a topological
transition in a metamaterial leads to a dramatic change in the photonic density
of states, with a resulting effect on every single physical parameter related
to the metamaterial - from thermodynamic quantities such as its equilibrium
electromagnetic energy to the nonlinear optical response to
quantum-electrodynamic effects such as spontaneous emission. In the present
paper, we demonstrate the modification of spontaneous light emission from
quantum dots placed near the surface of the metamaterial undergoing the
topological Lifshitz transition, and present the theoretical description of the
effect
Deformation Energy Minima at Finite Mass Asymmetry
A very general saddle point nuclear shape may be found as a solution of an
integro-differential equation without giving apriori any shape parametrization.
By introducing phenomenological shell corrections one obtains minima of
deformation energy for binary fission of parent nuclei at a finite (non-zero)
mass asymmetry. Results are presented for reflection asymmetric saddle point
shapes of thorium and uranium even-mass isotopes with A=226-238 and A=230-238
respectively.Comment: 5 pages, 2 Postscript figures, REVTeX, Version 4.
Similarity classes of 3x3 matrices over a local principal ideal ring
In this paper similarity classes of three by three matrices over a local
principal ideal commutative ring are analyzed. When the residue field is
finite, a generating function for the number of similarity classes for all
finite quotients of the ring is computed explicitly.Comment: 14 pages, final version, to appear in Communications in Algebr
Basic Representations of A_{2l}^(2) and D_{l+1}^(2) and the Polynomial Solutions to the Reduced BKP Hierarchies
Basic representations of A_{2l}^(2) and D_{l+1}^(2) are studied. The weight
vectors are represented in terms of Schur's -functions. The method to get
the polynomial solutions to the reduced BKP hierarchies is shown to be
equivalent to a certain rule in Maya game.Comment: January 1994, 11 page
Individual and Multi Vortex Pinning in Systems with Periodic Pinning Arrays
We examine multi and individual vortex pinning in thin superconductors with
periodic pinning arrays. For multi-vortex pinning we observe peaks in the
critical current of equal magnitude at every matching field, while for
individual vortex pinning we observe a sharp drop in the critical current after
the first matching field in agreement with experiments. We examine the scaling
of the critical current at commensurate and incommensurate fields for varied
pinning strength and show that the depinning force at incommensurate fields
decreases faster than at the commensurate fields.Comment: 4 figuure
Nucleosynthesis in Massive Stars With Improved Nuclear and Stellar Physics
We present the first calculations to follow the evolution of all stable
nuclei and their radioactive progenitors in stellar models computed from the
onset of central hydrogen burning through explosion as Type II supernovae.
Calculations are performed for Pop I stars of 15, 19, 20, 21, and 25 M_sun
using the most recently available experimental and theoretical nuclear data,
revised opacity tables, neutrino losses, and weak interaction rates, and taking
into account mass loss due to stellar winds. A novel ``adaptive'' reaction
network is employed with a variable number of nuclei (adjusted each time step)
ranging from about 700 on the main sequence to more than 2200 during the
explosion. The network includes, at any given time, all relevant isotopes from
hydrogen through polonium (Z=84). Even the limited grid of stellar masses
studied suggests that overall good agreement can be achieved with the solar
abundances of nuclei between 16O and 90Zr. Interesting discrepancies are seen
in the 20 M_sun model and, so far, only in that model, that are a consequence
of the merging of the oxygen, neon, and carbon shells about a day prior to core
collapse. We find that, in some stars, most of the ``p-process'' nuclei can be
produced in the convective oxygen burning shell moments prior to collapse; in
others, they are made only in the explosion. Serious deficiencies still exist
in all cases for the p-process isotopes of Ru and Mo.Comment: 53 pages, 17 color figures (3 as separate GIF images), slightly
extended discussion and references, accepted by Ap
ZOBOV: a parameter-free void-finding algorithm
ZOBOV (ZOnes Bordering On Voidness) is an algorithm that finds density
depressions in a set of points, without any free parameters, or assumptions
about shape. It uses the Voronoi tessellation to estimate densities, which it
uses to find both voids and subvoids. It also measures probabilities that each
void or subvoid arises from Poisson fluctuations. This paper describes the
ZOBOV algorithm, and the results from its application to the dark-matter
particles in a region of the Millennium Simulation. Additionally, the paper
points out an interesting high-density peak in the probability distribution of
dark-matter particle densities.Comment: 10 pages, 8 figures, MNRAS, accepted. Added explanatory figures, and
better edge-detection methods. ZOBOV code available at
http://www.ifa.hawaii.edu/~neyrinck/vobo
Large-Scale Power Spectrum and Structures from the ENEAR Galaxy Peculiar Velocity Catalogue
We estimate the mass density fluctuations power spectrum (PS) on large scales by applying a maximum likelihood technique to the peculiar velocity data of the recently completed redshift—distance survey of early-type galaxies (hereafter ENEAR). Parametric cold dark matter (CDM)-like models for the PS are assumed, and the best-fitting parameters are determined by maximizing the probability of the model given the measured peculiar velocities of the galaxies, their distances and estimated errors. The method has been applied to CDM models with and without COBE normalization. The general results are in agreement with the high-amplitude power spectra found from similar analyses of other independent all-sky catalogue of peculiar velocity data such as MARK III and SFI, in spite of the differences in the way these samples were selected, the fact that they probe different regions of space and galaxy distances are computed using different distance relations. For example, at k = 0.1 h Mpc−1 the power spectrum value is P(k)Ω1.2 = (6.5 ± 3) × 103(h−1 Mpc)3 and η8 ≡ σ8Ω0.6 = 1.1−0.35+0.2; the quoted uncertainties refer to 3σ error level. We also find that, for ΛCDM and OCDM COBE-normalized models, the best-fitting parameters are confined by a contour approximately defined by Ω h1.3 = 0.377 ± 0.08 and Ω h0.88 = 0.517±0.083 respectively. Γ-shape models, free of COBE normalization, result in the weak constraint of Γ≥0.17 and in the rather stringent constraint of η8 = 1.0 ± 0.25. All quoted uncertainties refer to 3σ confidence level (c.l.).
The calculated PS has been used as a prior for Wiener reconstruction of the density field at different resolutions and the three-dimensional velocity field within a volume of radius ≈80 h−1 Mpc. All major structures in the nearby Universe are recovered and are well matched to those predicted from all-sky redshift surveys. The robustness of these features has been tested with constrained realizations (CR). Analysis of the reconstructed three-dimensional velocity field yields a small bulk-flow amplitude (∼160±60 km s−1 at 60 h−1 Mpc) and a very small rms value of the tidal field (∼60 km s−1). The results give further support to the picture that most of the motion of the Local Group arises from mass fluctuations within the volume considered
- …