2,818 research outputs found

    Getting Pumped Up: Discoveries and Challenges in Reproducing a Worthington Steam Pump from the USS Monitor

    Get PDF
    Since 1987, when it was designated as the repository of all artifacts recovered from the wreck of the USS Monitor, The Mariners’ Museum in Newport News, Virginia has been conducting conservation on the objects to preserve them for exhibition and study. Included among the recovered artifacts are two direct-acting steam pumps built by the H.R. Worthington Company in Brooklyn, New York. As with many artifacts within the collection, during the disassembly and conservation treatment of the pumps, material losses due to years of corrosion as well as a structural weakness of some surviving components were revealed. As the conservation of the pumps progressed, discussion on final display led to dialogue on how to visually convey to the public the pumps’ movement without risking damage to fragile components. As a result, conservators started a project in 2009 to create a fully operational replica which would enable visitors to see the pumps in action. The reproduction of the pumps’ components required the use of multiple molding methods, laser scanning, computer aided drafting (CAD), 3-D printing technologies, and several casting techniques. This presentation will discuss the methods and challenges of reproducing a variety of simple and more complex bronze and iron parts by dry-sand casting. The lecture will also discuss what was learned about how the original pump parts were made through identifying marks left on the artifacts from the 1860’s casting process; and finally how that information was used to aid in the molding and casting of newly produced replica patterns

    Variables associated with odds of finishing and finish time in a 161-km ultramarathon

    Get PDF
    We sought to determine the degree to which age, sex, calendar year, previous event experience and ambient race day temperature were associated with finishing a 100-mile (161-km) trail running race and with finish time in that race. We computed separate generalized linear mixed-effects regression models for (1) odds of finishing and (2) finish times of finishers. Every starter from 1986 to 2007 was used in computing the models for odds of finishing (8,282 starts by 3,956 individuals) and every finisher in the same period was included in the models for finish time (5,276 finishes). Factors associated with improved odds of finishing included being a first-time starter and advancing calendar year. Factors associated with reduced odds of finishing included advancing age above 38 years and warmer weather. Beyond 38 years of age, women had worse odds of finishing than men. Warmer weather had a similar effect on finish rates for men and women. Finish times were slower with advancing age, slower for women than men, and less affected by warm weather for women than for men. Calendar year was not associated with finish time after adjustment for other variables

    Quasi-particle interference and superconducting gap in a high-temperature superconductor Ca2-xNaxCuO2Cl2

    Full text link
    High-transition-temperature (high-Tc) superconductivity is ubiquitous in the cuprates containing CuO2 planes but each cuprate has its own character. The study of the material dependence of the d-wave superconducting gap (SG) should provide important insights into the mechanism of high-Tc. However, because of the 'pseudogap' phenomenon, it is often unclear whether the energy gaps observed by spectroscopic techniques really represent the SG. Here, we report spectroscopic imaging scanning tunneling microscopy (SI-STM) studies of nearly-optimally-doped Ca2-xNaxCuO2Cl2 (Na-CCOC) with Tc = 25 ~ 28 K. They enable us to observe the quasi-particle interference (QPI) effect in this material, through which unambiguous new information on the SG is obtained. The analysis of QPI in Na-CCOC reveals that the SG dispersion near the gap node is almost identical to that of Bi2Sr2CaCu2Oy (Bi2212) at the same doping level, while Tc of Bi2212 is 3 times higher than that of Na-CCOC. We also find that SG in Na-CCOC is confined in narrower energy and momentum ranges than Bi2212. This explains at least in part the remarkable material dependence of TcComment: 13pages, 4fig

    Two Energy Scales and two Quasiparticle Dynamics in the Superconducting State of Underdoped Cuprates

    Full text link
    The superconducting state of underdoped cuprates is often described in terms of a single energy-scale, associated with the maximum of the (d-wave) gap. Here, we report on electronic Raman scattering results, which show that the gap function in the underdoped regime is characterized by two energy scales, depending on doping in opposite manners. Their ratios to the maximum critical temperature are found to be universal in cuprates. Our experimental results also reveal two different quasiparticle dynamics in the underdoped superconducting state, associated with two regions of momentum space: nodal regions near the zeros of the superconducting gap and antinodal regions. While antinodal quasiparticles quickly loose coherence as doping is reduced, coherent nodal quasiparticles persist down to low doping levels. A theoretical analysis using a new sum-rule allows us to relate the low-frequency-dependence of the Raman response to the temperature-dependence of the superfluid density, both controlled by nodal excitations.Comment: 16 pages, 5 figure

    Quantum oscillations from Fermi arcs

    Full text link
    When a metal is subjected to strong magnetic field B nearly all measurable quantities exhibit oscillations periodic in 1/B. Such quantum oscillations represent a canonical probe of the defining aspect of a metal, its Fermi surface (FS). In this study we establish a new mechanism for quantum oscillations which requires only finite segments of a FS to exist. Oscillations periodic in 1/B occur if the FS segments are terminated by a pairing gap. Our results reconcile the recent breakthrough experiments showing quantum oscillations in a cuprate superconductor YBCO, with a well-established result of many angle resolved photoemission (ARPES) studies which consistently indicate "Fermi arcs" -- truncated segments of a Fermi surface -- in the normal state of the cuprates.Comment: 8 pages, 5 figure

    The pseudogap: friend or foe of high Tc?

    Full text link
    Although nineteen years have passed since the discovery of high temperature superconductivity, there is still no consensus on its physical origin. This is in large part because of a lack of understanding of the state of matter out of which the superconductivity arises. In optimally and underdoped materials, this state exhibits a pseudogap at temperatures large compared to the superconducting transition temperature. Although discovered only three years after the pioneering work of Bednorz and Muller, the physical origin of this pseudogap behavior and whether it constitutes a distinct phase of matter is still shrouded in mystery. In the summer of 2004, a band of physicists gathered for five weeks at the Aspen Center for Physics to discuss the pseudogap. In this perspective, we would like to summarize some of the results presented there and discuss its importance in the context of strongly correlated electron systems.Comment: expanded version, 20 pages, 11 figures, to be published, Advances in Physic

    Scorpion Biodiversity and Interslope Divergence at “Evolution Canyon”, Lower Nahal Oren Microsite, Mt. Carmel, Israel

    Get PDF
    BACKGROUND: Local natural laboratories, designated by us as the "Evolution Canyon" model, are excellent tools to study regional and global ecological dynamics across life. They present abiotic and biotic contrasts locally, permitting the pursuit of observations and experiments across diverse taxa sharing sharp microecological subdivisions. Higher solar radiation received by the "African savannah-like" south-facing slopes (AS) in canyons north of the equator than by the opposite "European maquis-like" north-facing slopes (ES) is associated with higher abiotic stress. Scorpions are a suitable taxon to study interslope biodiversity differences, associated with the differences in abiotic factors (climate, drought), due to their ability to adapt to dry environments. METHODOLOGY/PRINCIPAL FINDINGS: Scorpions were studied by the turning stone method and by UV light methods. The pattern observed in scorpions was contrasted with similar patterns in several other taxa at the same place. As expected, the AS proved to be significantly more speciose regarding scorpions, paralleling the interslope patterns in taxa such as lizards and snakes, butterflies (Rhopalocera), beetles (families Tenebrionidae, Dermestidae, Chrysomelidae), and grasshoppers (Orthoptera). CONCLUSIONS/SIGNIFICANCE: Our results support an earlier conclusion stating that the homogenizing effects of migration and stochasticity are not able to eliminate the interslope intra- and interspecific differences in biodiversity despite an interslope distance of only 100 m at the "EC" valley bottom. In our opinion, the interslope microclimate selection, driven mainly by differences in insolance, could be the primary factor responsible for the observed interslope pattern
    • 

    corecore