28,215 research outputs found
The aerospace technology laboratory (a perspective, then and now)
The physical changes that have taken place in aerospace facilities since the Wright brothers' accomplishment 78 years ago are highlighted. For illustrative purposes some of the technical facilities and operations of the NASA Lewis Research Center are described. These simulation facilities were designed to support research and technology studies in aerospace propulsion
Gravity gradient attitude control system Patent
Gravity gradient attitude control system with gravity gradiometer and reaction wheels for artificial satellite attitude contro
Photographic Effects Produced by Cadmium and Other Elements Under Neutron Bombardment
It has been found that when a duplitized x-ray film has Cd placed next to it and is then surrounded by paraffin and exposed to a neutron source, the film shows blackening under the cadmium. Under these conditions the film also shows some general blackening which is rather weak. The neutrons used in these experiments were obtained by bombarding either Li or Be with about 10 microamperes of 1.2 Mev deuterons furnished by a cyclotron. There are, of course, also p-rays incident on the Cd and the photographic film, and it was necessary to establish the blackening under the cadmium as due to slow neutrons and not to these radiations
Interplanetary propulsion using inertial fusion
Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed
Effective medium theory of elastic waves in random networks of rods
We formulate an effective medium (mean field) theory of a material consisting
of randomly distributed nodes connected by straight slender rods, hinged at the
nodes. Defining novel wavelength-dependent effective elastic moduli, we
calculate both the static moduli and the dispersion relations of ultrasonic
longitudinal and transverse elastic waves. At finite wave vector the waves
are dispersive, with phase and group velocities decreasing with increasing wave
vector. These results are directly applicable to networks with empty pore
space. They also describe the solid matrix in two-component (Biot) theories of
fluid-filled porous media. We suggest the possibility of low density materials
with higher ratios of stiffness and strength to density than those of foams,
aerogels or trabecular bone.Comment: 14 pp., 3 fig
A low-loss photonic silica nanofiber for higher-order modes
Optical nanofibers confine light to subwavelength scales, and are of interest
for the design, integration, and interconnection of nanophotonic devices. Here
we demonstrate high transmission (> 97%) of the first family of excited modes
through a 350 nm radius fiber, by appropriate choice of the fiber and precise
control of the taper geometry. We can design the nanofibers so that these modes
propagate with most of their energy outside the waist region. We also present
an optical setup for selectively launching these modes with less than 1%
fundamental mode contamination. Our experimental results are in good agreement
with simulations of the propagation. Multimode optical nanofibers expand the
photonic toolbox, and may aid in the realization of a fully integrated
nanoscale device for communication science, laser science or other sensing
applications.Comment: 12 pages, 5 figures, movies available onlin
High resolution simulations of the reionization of an isolated Milky Way - M31 galaxy pair
We present the results of a set of numerical simulations aimed at studying
reionization at galactic scale. We use a high resolution simulation of the
formation of the Milky Way-M31 system to simulate the reionization of the local
group. The reionization calculation was performed with the post-processing
radiative transfer code ATON and the underlying cosmological simulation was
performed as part of the CLUES project. We vary the source models to bracket
the range of source properties used in the literature. We investigate the
structure and propagation of the galatic ionization fronts by a visual
examination of our reionization maps. Within the progenitors we find that
reionization is patchy, and proceeds locally inside out. The process becomes
patchier with decreasing source photon output. It is generally dominated by one
major HII region and 1-4 additional isolated smaller bubbles, which eventually
overlap. Higher emissivity results in faster and earlier local reionization. In
all models, the reionization of the Milky Way and M31 are similar in duration,
i.e. between 203 Myr and 22 Myr depending on the source model, placing their
zreion between 8.4 and 13.7. In all models except the most extreme, the MW and
M31 progenitors reionize internally, ignoring each other, despite being
relatively close to each other even during the epoch of reionization. Only in
the case of strong supernova feedback suppressing star formation in haloes less
massive than 10^9 M_sun, and using our highest emissivity, we find that the MW
is reionized by M31.Comment: Accepted for publication in ApJ. 14 pages, 4 figures, 1 tabl
Basement-cover relations and internal structure of the Cape Smith klippe: A 1.9 Ga greenstone belt in northern Quebec, Canada
The Cape Smith Belt is a 380x60 km tectonic klippe composed of greenschistto amphibolite-grade mafic and komatiitic lava flows and fine-grained quartzose sediment, intruded by minor syn- to post-tectonic granitoids. Previously studied transects in areas of relatively high structural level show that the belt is constructed of seven or more north-dipping thrust sheets which verge toward the Superior Province (Archean) foreland in the south and away from an Archean basement massif (Kovik Antiform) external to the Trans-Hudson Orogen (Early Proterozoic) in the north. A field project (mapping and structural-stratigraphic-metamorphic studies) directed by MRS was begun in 1985 aimed at the structurally deeper levels of the belt and underlying basement, which are superby exposed in oblique cross-section (12 km minimum structural relief) at the west-plunging eastern end of the belt. Mapping now complete of the eastern end of the belt confirms that all of the metavolcanic and most of the metasedimentary rocks are allochthonous with respect to the Archean basement, and that the thrusts must have been rooted north of Kovik Antiform. The main findings follow
- …