24,175 research outputs found

    A reusable prepositioned ATP reaction chamber

    Get PDF
    Luminescence biometer detects presence of life by means of light-emitting chemical reaction of luciferin and luciferase with adenosine triphosphate (ATP) that occurs in all living cells. Amount of light in reaction chamber is measured to determine presence and extent of life

    Light detection instrument Patent

    Get PDF
    Detection instrument for light emitted from ATP biochemical reactio

    Effect of environment on biological burden during spacecraft assembly

    Get PDF
    Determining effects of environment on accumulation of biological burden on spacecraft during assembl

    Off-lattice Monte Carlo Simulation of Supramolecular Polymer Architectures

    Get PDF
    We introduce an efficient, scalable Monte Carlo algorithm to simulate cross-linked architectures of freely-jointed and discrete worm-like chains. Bond movement is based on the discrete tractrix construction, which effects conformational changes that exactly preserve fixed-length constraints of all bonds. The algorithm reproduces known end-to-end distance distributions for simple, analytically tractable systems of cross-linked stiff and freely jointed polymers flawlessly, and is used to determine the effective persistence length of short bundles of semi-flexible worm-like chains, cross-linked to each other. It reveals a possible regulatory mechanism in bundled networks: the effective persistence of bundles is controlled by the linker density.Comment: 4 pages, 4 figure

    Development of a cobalt-tungsten ferromagnetic, high-temperature, structural alloy

    Get PDF
    Cobalt-tungsten ferromagnetic, high temperature structural alloy for rotor applications in space power generator

    Evolution of Phase-Space Density in Dark Matter Halos

    Full text link
    The evolution of the phase-space density profile in dark matter (DM) halos is investigated by means of constrained simulations, designed to control the merging history of a given DM halo. Halos evolve through a series of quiescent phases of a slow accretion intermitted by violent events of major mergers. In the quiescent phases the density of the halo closely follows the NFW profile and the phase-space density profile, Q(r), is given by the Taylor & Navarro power law, r^{-beta}, where beta ~ 1.9 and stays remarkably stable over the Hubble time. Expressing the phase-space density by the NFW parameters, Q(r)=Qs (r/Rs)^{-beta}, the evolution of Q is determined by Qs. We have found that the effective mass surface density within Rs, Sigma_s = rhos Rs, remains constant throughout the evolution of a given DM halo along the main branch of its merging tree. This invariance entails that Qs ~ Rs^{-5/2} and Q(r) ~ Sigma_s^{-1/2} Rs^{-5/2} (r/ Rs)^{-beta}. It follows that the phase-space density remains constant, in the sense of Qs=const., in the quiescent phases and it decreases as Rs^{-5/2} in the violent ones. The physical origin of the NFW density profile and the phase-space density power law is still unknown. Yet, the numerical experiments show that halos recover these relations after the violent phases. The major mergers drive Rs to increase and Qs to decrease discontinuously while keeping Qs Rs^{5/2} = const. The virial equilibrium in the quiescent phases implies that a DM halos evolves along a sequence of NFW profiles with constant energy per unit volume (i.e., pressure) within Rs.Comment: 7 pages, 5 figures, accepted by the Astrophysical Journal. Revised, 2 figures adde

    Interplanetary propulsion using inertial fusion

    Get PDF
    Inertial fusion can be used to power spacecraft within the solar system and beyond. Such spacecraft have the potential for short-duration manned-mission performance exceeding other technologies. We are conducting a study to assess the systems aspects of inertial fusion as applied to such missions, based on the conceptual engine design of Hyde (1983) we describe the required systems for an entirely new spacecraft design called VISTA that is based on the use of DT fuel. We give preliminary design details for the power conversion and power conditioning systems for manned missions to Mars of total duration of about 100 days. Specific mission performance results will be published elsewhere, after the study has been completed

    Vast planes of satellites in a high resolution simulation of the Local Group: comparison to Andromeda

    Full text link
    We search for vast planes of satellites (VPoS) in a high resolution simulation of the Local Group performed by the CLUES project, which improves significantly the resolution of former similar studies. We use a simple method for detecting planar configurations of satellites, and validate it on the known plane of M31. We implement a range of prescriptions for modelling the satellite populations, roughly reproducing the variety of recipes used in the literature, and investigate the occurence and properties of planar structures in these populations. The structure of the simulated satellite systems is strongly non-random and contains planes of satellites, predominantly co-rotating, with, in some cases, sizes comparable to the plane observed in M31 by Ibata et al.. However the latter is slightly richer in satellites, slightly thinner and has stronger co-rotation, which makes it stand out as overall more exceptional than the simulated planes, when compared to a random population. Although the simulated planes we find are generally dominated by one real structure, forming its backbone, they are also partly fortuitous and are thus not kinematically coherent structures as a whole. Provided that the simulated and observed planes of satellites are indeed of the same nature, our results suggest that the VPoS of M31 is not a coherent disc and that one third to one half of its satellites must have large proper motions perpendicular to the plane
    corecore