8 research outputs found

    STATISTICAL ISSUES IN EFFICACY EVALUATION FOR COMPANION ANIMAL DRUG DEVELOPMENT

    Get PDF
    Companion animals, commonly called pets, are animals such as dogs, cats, and horses. The companion animal drug market has expanded rapidly in recent years. Two major points of focus in companion animal drug development are therapeutics and parasiticides. From a statistics point of view, experimental design, experimental unit determination, sample size estimation and reestimation, treatment design, data transformation, multiple testing, and proper modeling are major statistical issues when efficacy evaluation in a companion animal study is conducted. These major statistical issues are addressed using two clinical studies as examples: Reconcile® (Fluoxetine) for the treatment of separation anxiety in dogs and Comfortis® (Spinosad) for the control of fleas in dogs

    Novel Small Molecules Targeting the Intrinsically Disordered Structural Ensemble of a-Synuclein Protect Against Diverse a-Synuclein Mediated Dysfunctions

    Get PDF
    The over-expression and aggregation of α-synuclein (αSyn) are linked to the onset and pathology of Parkinson’s disease. Native monomeric αSyn exists in an intrinsically disordered ensemble of interconverting conformations, which has made its therapeutic targeting by small molecules highly challenging. Nonetheless, here we successfully target the monomeric structural ensemble of αSyn and thereby identify novel drug-like small molecules that impact multiple pathogenic processes. Using a surface plasmon resonance high-throughput screen, in which monomeric αSyn is incubated with microchips arrayed with tethered compounds, we identified novel αSyn interacting drug-like compounds. Because these small molecules could impact a variety of αSyn forms present in the ensemble, we tested representative hits for impact on multiple αSyn malfunctions in vitro and in cells including aggregation and perturbation of vesicular dynamics. We thereby identified a compound that inhibits αSyn misfolding and is neuroprotective, multiple compounds that restore phagocytosis impaired by αSyn overexpression, and a compound blocking cellular transmission of αSyn. Our studies demonstrate that drug-like small molecules that interact with native αSyn can impact a variety of its pathological processes. Thus, targeting the intrinsically disordered ensemble of αSyn offers a unique approach to the development of small molecule research tools and therapeutics for Parkinson’s disease

    Novel Small Molecules Targeting the Intrinsically Disordered Structural Ensemble of α-Synuclein Protect Against Diverse α-Synuclein Mediated Dysfunctions

    Get PDF
    Funder: Howard Hughes Medical Institute (HHMI); doi: https://doi.org/10.13039/100000011Abstract: The over-expression and aggregation of α-synuclein (αSyn) are linked to the onset and pathology of Parkinson’s disease. Native monomeric αSyn exists in an intrinsically disordered ensemble of interconverting conformations, which has made its therapeutic targeting by small molecules highly challenging. Nonetheless, here we successfully target the monomeric structural ensemble of αSyn and thereby identify novel drug-like small molecules that impact multiple pathogenic processes. Using a surface plasmon resonance high-throughput screen, in which monomeric αSyn is incubated with microchips arrayed with tethered compounds, we identified novel αSyn interacting drug-like compounds. Because these small molecules could impact a variety of αSyn forms present in the ensemble, we tested representative hits for impact on multiple αSyn malfunctions in vitro and in cells including aggregation and perturbation of vesicular dynamics. We thereby identified a compound that inhibits αSyn misfolding and is neuroprotective, multiple compounds that restore phagocytosis impaired by αSyn overexpression, and a compound blocking cellular transmission of αSyn. Our studies demonstrate that drug-like small molecules that interact with native αSyn can impact a variety of its pathological processes. Thus, targeting the intrinsically disordered ensemble of αSyn offers a unique approach to the development of small molecule research tools and therapeutics for Parkinson’s disease
    corecore