14,400 research outputs found
Combustion instability prediction using a nonlinear bipropellant vaporization model
Combustion instability prediction using nonlinear bipropellant vaporization mode
Scalable Bayesian Non-Negative Tensor Factorization for Massive Count Data
We present a Bayesian non-negative tensor factorization model for
count-valued tensor data, and develop scalable inference algorithms (both batch
and online) for dealing with massive tensors. Our generative model can handle
overdispersed counts as well as infer the rank of the decomposition. Moreover,
leveraging a reparameterization of the Poisson distribution as a multinomial
facilitates conjugacy in the model and enables simple and efficient Gibbs
sampling and variational Bayes (VB) inference updates, with a computational
cost that only depends on the number of nonzeros in the tensor. The model also
provides a nice interpretability for the factors; in our model, each factor
corresponds to a "topic". We develop a set of online inference algorithms that
allow further scaling up the model to massive tensors, for which batch
inference methods may be infeasible. We apply our framework on diverse
real-world applications, such as \emph{multiway} topic modeling on a scientific
publications database, analyzing a political science data set, and analyzing a
massive household transactions data set.Comment: ECML PKDD 201
- …