287 research outputs found

    Age-Dependent Decline in Mouse Lung Regeneration with Loss of Lung Fibroblast Clonogenicity and Increased Myofibroblastic Differentiation

    Get PDF
    While aging leads to a reduction in the capacity for regeneration after pneumonectomy (PNX) in most mammals, this biological phenomenon has not been characterized over the lifetime of mice. We measured the age-specific (3, 9, 24 month) effects of PNX on physiology, morphometry, cell proliferation and apoptosis, global gene expression, and lung fibroblast phenotype and clonogenicity in female C57BL6 mice. The data show that only 3 month old mice were fully capable of restoring lung volumes by day 7 and total alveolar surface area by 21 days. By 9 months, the rate of regeneration was slower (with incomplete regeneration by 21 days), and by 24 months there was no regrowth 21 days post-PNX. The early decline in regeneration rate was not associated with changes in alveolar epithelial cell type II (AECII) proliferation or apoptosis rate. However, significant apoptosis and lack of cell proliferation was evident after PNX in both total cells and AECII cells in 24 mo mice. Analysis of gene expression at several time points (1, 3 and 7 days) post-PNX in 9 versus 3 month mice was consistent with a myofibroblast signature (increased Tnc, Lox1, Col3A1, Eln and Tnfrsf12a) and more alpha smooth muscle actin (αSMA) positive myofibroblasts were present after PNX in 9 month than 3 month mice. Isolated lung fibroblasts showed a significant age-dependent loss of clonogenicity. Moreover, lung fibroblasts isolated from 9 and 17 month mice exhibited higher αSMA, Col3A1, Fn1 and S100A expression, and lower expression of the survival gene Mdk consistent with terminal differentiation. These data show that concomitant loss of clonogenicity and progressive myofibroblastic differentiation contributes to the age-dependent decline in the rate of lung regeneration

    In vivo tomographic imaging based on bioluminescence

    Get PDF
    The most important task for bioluminescence imaging is to identify the emission source from the captured bioluminescent signal on the surface of a small tested animal. Quantitative information on the source location, geometry and intensity serves for in-vivo monitoring of infectious diseases, tumor growth, metastases in the small animal. In this paper, we present a point-spread function-based method for reconstructing the internal bioluminescent source from the surface light output flux signal. The method is evaluated for sensing the internal emission sources in nylon phantoms and within a live mouse. The surface bioluminescent signal is taken with a highly sensitive CCD camera. The results show the feasibility and efficiency of the proposed point-spread function-based method

    The PYRIN Domain-only Protein POP1 Inhibits Inflammasome Assembly and Ameliorates Inflammatory Disease

    Get PDF
    SummaryIn response to infections and tissue damage, ASC-containing inflammasome protein complexes are assembled that promote caspase-1 activation, IL-1β and IL-18 processing and release, pyroptosis, and the release of ASC particles. However, excessive or persistent activation of the inflammasome causes inflammatory diseases. Therefore, a well-balanced inflammasome response is crucial for the maintenance of homeostasis. We show that the PYD-only protein POP1 inhibited ASC-dependent inflammasome assembly by preventing inflammasome nucleation, and consequently interfered with caspase-1 activation, IL-1β and IL-18 release, pyroptosis, and the release of ASC particles. There is no mouse ortholog for POP1, but transgenic expression of human POP1 in monocytes, macrophages, and dendritic cells protected mice from systemic inflammation triggered by molecular PAMPs, inflammasome component NLRP3 mutation, and ASC danger particles. POP1 expression was regulated by TLR and IL-1R signaling, and we propose that POP1 provides a regulatory feedback loop that shuts down excessive inflammatory responses and thereby prevents systemic inflammation

    Prediction of Breast Cancer-Related Lymphedema By Dermal Backflow Detected With Near-infrared Fluorescence Lymphatic Imaging

    Get PDF
    PURPOSE: Mild breast cancer-related lymphedema (BCRL) is clinically diagnosed as a 5%-10% increase in arm volume, typically measured no earlier than 3-6 months after locoregional treatment. Early BCRL treatment is associated with better outcomes, yet amid increasing evidence that lymphedema exists in a latent form, treatment is typically delayed until arm swelling is obvious. In this study, we investigated whether near-infrared fluorescence lymphatic imaging (NIRF-LI) surveillance could characterize early onset of peripheral lymphatic dysfunction as a predictor of BCRL. METHODS: In a prospective, longitudinal cohort/observational study (NCT02949726), subjects with locally advanced breast cancer who received axillary lymph node dissection and regional nodal radiotherapy (RT) were followed serially, between 2016 and 2021, before surgery, 4-8 weeks after surgery, and 6, 12, and 18 months after RT. Arm volume was measured by perometry, and lymphatic (dys) function was assessed by NIRF-LI. RESULTS: By 18 months after RT, 30 of 42 study subjects (71%) developed mild-moderate BCRL (i.e., ≥ 5% arm swelling relative to baseline), all manifested by dermal backflow of lymph into lymphatic capillaries or interstitial spaces. Dermal backflow had an 83% positive predictive value and 86% negative predictive value for BCRL, with a sensitivity of 97%, specificity of 50%, accuracy of 83%, positive likelihood ratio of 1.93, negative likelihood ratio of 0.07, and odds ratio of 29.00. Dermal backflow appeared on average 8.3 months, but up to 23 months, before the onset of mild BCRL. CONCLUSION: BCRL can be predicted by dermal backflow, which often appears months before arm swelling, enabling early treatment before the onset of edema and irreversible tissue changes

    Proteome-wide analysis of a malaria vaccine study reveals personalized humoral immune profiles in Tanzanian adults

    Get PDF
    Tanzanian adult male volunteers were immunized by direct venous inoculation with radiation-attenuated, aseptic, purified, cryopreserved; Plasmodium falciparum; (Pf) sporozoites (PfSPZ Vaccine) and protective efficacy assessed by homologous controlled human malaria infection (CHMI). Serum immunoglobulin G (IgG) responses were analyzed longitudinally using a Pf protein microarray covering 91% of the proteome, providing first insights into naturally acquired and PfSPZ Vaccine-induced whole parasite antibody profiles in malaria pre-exposed Africans. Immunoreactivity was identified against 2239 functionally diverse Pf proteins, showing a wide breadth of humoral response. Antibody-based immune 'fingerprints' in these individuals indicated a strong person-specific immune response at baseline, with little changes in the overall humoral immunoreactivity pattern measured after immunization. The moderate increase in immunogenicity following immunization and the extensive and variable breadth of humoral immune response observed in the volunteers at baseline suggest that pre-exposure reduces vaccine-induced antigen reactivity in unanticipated ways

    Clinical impairment in premanifest and early Huntington's disease is associated with regionally specific atrophy.

    No full text
    TRACK-HD is a multicentre longitudinal observational study investigating the use of clinical assessments and 3-Tesla magnetic resonance imaging as potential biomarkers for future therapeutic trials in Huntington's disease (HD). The cross-sectional data from this large well-characterized dataset provide the opportunity to improve our knowledge of how the underlying neuropathology of HD may contribute to the clinical manifestations of the disease across the spectrum of premanifest (PreHD) and early HD. Two hundred and thirty nine gene-positive subjects (120 PreHD and 119 early HD) from the TRACK-HD study were included. Using voxel-based morphometry (VBM), grey and white matter volumes were correlated with performance in four domains: quantitative motor (tongue force, metronome tapping, and gait); oculomotor [anti-saccade error rate (ASE)]; cognition (negative emotion recognition, spot the change and the University of Pennsylvania smell identification test) and neuropsychiatric measures (apathy, affect and irritability). After adjusting for estimated disease severity, regionally specific associations between structural loss and task performance were found (familywise error corrected, P < 0.05); impairment in tongue force, metronome tapping and ASE were all associated with striatal loss. Additionally, tongue force deficits and ASE were associated with volume reduction in the occipital lobe. Impaired recognition of negative emotions was associated with volumetric reductions in the precuneus and cuneus. Our study reveals specific associations between atrophy and decline in a range of clinical modalities, demonstrating the utility of VBM correlation analysis for investigating these relationships in HD

    Cell-free DNA ultra-low-pass whole genome sequencing to distinguish malignant peripheral nerve sheath tumor (MPNST) from its benign precursor lesion: A cross-sectional study

    Get PDF
    BACKGROUND: The leading cause of mortality for patients with the neurofibromatosis type 1 (NF1) cancer predisposition syndrome is the development of malignant peripheral nerve sheath tumor (MPNST), an aggressive soft tissue sarcoma. In the setting of NF1, this cancer type frequently arises from within its common and benign precursor, plexiform neurofibroma (PN). Transformation from PN to MPNST is challenging to diagnose due to difficulties in distinguishing cross-sectional imaging results and intralesional heterogeneity resulting in biopsy sampling errors. METHODS AND FINDINGS: This multi-institutional study from the National Cancer Institute and Washington University in St. Louis used fragment size analysis and ultra-low-pass whole genome sequencing (ULP-WGS) of plasma cell-free DNA (cfDNA) to distinguish between MPNST and PN in patients with NF1. Following in silico enrichment for short cfDNA fragments and copy number analysis to estimate the fraction of plasma cfDNA originating from tumor (tumor fraction), we developed a noninvasive classifier that differentiates MPNST from PN with 86% pretreatment accuracy (91% specificity, 75% sensitivity) and 89% accuracy on serial analysis (91% specificity, 83% sensitivity). Healthy controls without NF1 (participants = 16, plasma samples = 16), PN (participants = 23, plasma samples = 23), and MPNST (participants = 14, plasma samples = 46) cohorts showed significant differences in tumor fraction in plasma (P = 0.001) as well as cfDNA fragment length (P \u3c 0.001) with MPNST samples harboring shorter fragments and being enriched for tumor-derived cfDNA relative to PN and healthy controls. No other covariates were significant on multivariate logistic regression. Mutational analysis demonstrated focal NF1 copy number loss in PN and MPNST patient plasma but not in healthy controls. Greater genomic instability including alterations associated with malignant transformation (focal copy number gains in chromosome arms 1q, 7p, 8q, 9q, and 17q; focal copy number losses in SUZ12, SMARCA2, CDKN2A/B, and chromosome arms 6p and 9p) was more prominently observed in MPNST plasma. Furthermore, the sum of longest tumor diameters (SLD) visualized by cross-sectional imaging correlated significantly with paired tumor fractions in plasma from MPNST patients (r = 0.39, P = 0.024). On serial analysis, tumor fraction levels in plasma dynamically correlated with treatment response to therapy and minimal residual disease (MRD) detection before relapse. Study limitations include a modest MPNST sample size despite accrual from 2 major referral centers for this rare malignancy, and lack of uniform treatment and imaging protocols representing a real-world cohort. CONCLUSIONS: Tumor fraction levels derived from cfDNA fragment size and copy number alteration analysis of plasma cfDNA using ULP-WGS significantly correlated with MPNST tumor burden, accurately distinguished MPNST from its benign PN precursor, and dynamically correlated with treatment response. In the future, our findings could form the basis for improved early cancer detection and monitoring in high-risk cancer-predisposed populations
    • …
    corecore