2,802 research outputs found
Time averages, recurrence and transience in the stochastic replicator dynamics
We investigate the long-run behavior of a stochastic replicator process,
which describes game dynamics for a symmetric two-player game under aggregate
shocks. We establish an averaging principle that relates time averages of the
process and Nash equilibria of a suitably modified game. Furthermore, a
sufficient condition for transience is given in terms of mixed equilibria and
definiteness of the payoff matrix. We also present necessary and sufficient
conditions for stochastic stability of pure equilibria.Comment: Published in at http://dx.doi.org/10.1214/08-AAP577 the Annals of
Applied Probability (http://www.imstat.org/aap/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Mobility and asymmetry effects in one-dimensional rock-paper-scissors games
As the behavior of a system composed of cyclically competing species is
strongly influenced by the presence of fluctuations, it is of interest to study
cyclic dominance in low dimensions where these effects are the most prominent.
We here discuss rock-paper-scissors games on a one-dimensional lattice where
the interaction rates and the mobility can be species dependent. Allowing only
single site occupation, we realize mobility by exchanging individuals of
different species. When the interaction and swapping rates are symmetric, a
strongly enhanced swapping rate yields an increased mixing of the species,
leading to a mean-field like coexistence even in one-dimensional systems. This
coexistence is transient when the rates are asymmetric, and eventually only one
species will survive. Interestingly, in our spatial games the dominating
species can differ from the species that would dominate in the corresponding
nonspatial model. We identify different regimes in the parameter space and
construct the corresponding dynamical phase diagram.Comment: 6 pages, 5 figures, to appear in Physical Review
The Dynamics of Asymmetric Games
A game dynamical analysis of a simple asymmetric game (two roles with two alternatives each) shows that an interesting class of "semi-stable" heteroclinic cycles leading to a highly unpredictable behavior can occur in a robust way. Biological examples related to conflicts over ownership and parental investment are analyzed
Enhancement of cooperation in highly clustered scale-free networks
We study the effect of clustering on the organization of cooperation, by
analyzing the evolutionary dynamics of the Prisoner's Dilemma on scale-free
networks with a tunable value of clustering. We find that a high value of the
clustering coefficient produces an overall enhancement of cooperation in the
network, even for a very high temptation to defect. On the other hand, high
clustering homogeneizes the process of invasion of degree classes by defectors,
decreasing the chances of survival of low densities of cooperator strategists
in the network.Comment: 4 pages, 3 figure
Stochastic gain in population dynamics
We introduce an extension of the usual replicator dynamics to adaptive
learning rates. We show that a population with a dynamic learning rate can gain
an increased average payoff in transient phases and can also exploit external
noise, leading the system away from the Nash equilibrium, in a reasonance-like
fashion. The payoff versus noise curve resembles the signal to noise ratio
curve in stochastic resonance. Seen in this broad context, we introduce another
mechanism that exploits fluctuations in order to improve properties of the
system. Such a mechanism could be of particular interest in economic systems.Comment: accepted for publication in Phys. Rev. Let
Impact of generalized benefit functions on the evolution of cooperation in spatial public goods games with continuous strategies
Cooperation and defection may be considered as two extreme responses to a
social dilemma. Yet the reality is much less clear-cut. Between the two
extremes lies an interval of ambivalent choices, which may be captured
theoretically by means of continuous strategies defining the extent of the
contributions of each individual player to the common pool. If strategies are
chosen from the unit interval, where 0 corresponds to pure defection and 1
corresponds to the maximal contribution, the question is what is the
characteristic level of individual investments to the common pool that emerges
if the evolution is guided by different benefit functions. Here we consider the
steepness and the threshold as two parameters defining an array of generalized
benefit functions, and we show that in a structured population there exist
intermediate values of both at which the collective contributions are maximal.
However, as the cost-to-benefit ratio of cooperation increases the
characteristic threshold decreases, while the corresponding steepness
increases. Our observations remain valid if more complex sigmoid functions are
used, thus reenforcing the importance of carefully adjusted benefits for high
levels of public cooperation.Comment: 8 two-column pages, 8 figures; accepted for publication in Physical
Review
Dephasing of quantum dot exciton polaritons in electrically tunable nanocavities
We experimentally and theoretically investigate dephasing of zero dimensional
microcavity polaritons in electrically tunable single dot photonic crystal
nanocavities. Such devices allow us to alter the dot-cavity detuning in-situ
and to directly probe the influence on the emission spectrum of varying the
incoherent excitation level and the lattice temperature. By comparing our
results with theory we obtain the polariton dephasing rate and clarify its
dependence on optical excitation power and lattice temperature. For low
excitation levels we observe a linear temperature dependence, indicative of
phonon mediated polariton dephasing. At higher excitation levels, excitation
induced dephasing is observed due to coupling to the solid-state environment.
The results provide new information on coherence properties of quantum dot
microcavity polaritons.Comment: Figure 2, panel (b) changed to logarithmic + linear scal
Random replicators with high-order interactions
We use tools of the equilibrium statistical mechanics of disordered systems
to study analytically the statistical properties of an ecosystem composed of N
species interacting via random, Gaussian interactions of order p >= 2, and
deterministic self-interactions u <= 0. We show that for nonzero u the effect
of increasing the order of the interactions is to make the system more
cooperative, in the sense that the fraction of extinct species is greatly
reduced. Furthermore, we find that for p > 2 there is a threshold value which
gives a lower bound to the concentration of the surviving species, preventing
then the existence of rare species and, consequently, increasing the robustness
of the ecosystem to external perturbations.Comment: 7 pages, 4 Postscript figure
Impact of aging on the evolution of cooperation in the spatial prisoner's dilemma game
Aging is always present, tailoring our interactions with others and
postulating a finite lifespan during which we are able to exercise them. We
consider the prisoner's dilemma game on a square lattice, and examine how
quenched age distributions and different aging protocols influence the
evolution of cooperation when taking the life experience and knowledge
accumulation into account as time passes. In agreement with previous studies,
we find that a quenched assignment of age to players, introducing heterogeneity
to the game, substantially promotes cooperative behavior. Introduction of aging
and subsequent death as a coevolutionary process may act detrimental on
cooperation but enhances it efficiently if the offspring of individuals that
have successfully passed their strategy is considered newborn. We study
resulting age distributions of players, and show that the heterogeneity is
vital yet insufficient for explaining the observed differences in cooperator
abundance on the spatial grid. The unexpected increment of cooperation levels
can be explained by a dynamical effect that has a highly selective impact on
the propagation of cooperator and defector states.Comment: 7 two-column pages, 5 figures; accepted for publication in Physical
Review
Random Topologies and the emergence of cooperation: the role of short-cuts
We study in detail the role of short-cuts in promoting the emergence of
cooperation in a network of agents playing the Prisoner's Dilemma Game (PDG).
We introduce a model whose topology interpolates between the one-dimensional
euclidean lattice (a ring) and the complete graph by changing the value of one
parameter (the probability p to add a link between two nodes not already
connected in the euclidean configuration). We show that there is a region of
values of p in which cooperation is largely enhanced, whilst for smaller values
of p only a few cooperators are present in the final state, and for p
\rightarrow 1- cooperation is totally suppressed. We present analytical
arguments that provide a very plausible interpretation of the simulation
results, thus unveiling the mechanism by which short-cuts contribute to promote
(or suppress) cooperation
- …
