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FOREWORD 

A game dynamical analysis of a simple asymmetric game (two roles with two alter- 
natives each) shows that an interesting class of "semi-stable" heteroclinic cycles leading to 
a highly unpredictable behaviour can occur in a robust way. Biological examples related 
to conflicts over ownership and parental investment are analysed. 
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1. In t roduct ion  

Even in the artificial world of 'fair' parlour games and sporting encounters, asymmetries 

between the con testant's roles are frequent. Some rules are meant to reduce this asymmetry 

(toss up a coin to decide who moves first; play a return match) but others emphasize it 

(a draw favours the incumbent champion; the nation organizing the world soccer cup 

automatically qualifies). In nature, the role of asymmetries is much more pronounced 

still, and soon after the introduction of game theory in the study of biological contests, a 

series of papers underlined the special 'logic of asymmetric contests' and drew attention 

t o  conflicts with in-built asymmetries like those between owner and intruder, weaker and 

stronger contestant, male and female, parent and offspring, queen and worker, prey and 

predator etc . . . In Maynard Smith's book on "Evolution and the Theory of Games" 

(1982), three chapters are devoted to asymmetric games, and a rough census of its list of 



references seems to show that the majority of conflicts studied by sociobiologists exhibits 

asymmetries. 

In contrast to this, the study of the dynamics of asymmetric games has lagged considerably 

behind that of the symmetric case. Of the few papers, most have investigated the case 

of separate populations (Taylor (1979), Schuster et. al. (1981)). This is appropriate for 

coevolutionary games between preda.tor and prey or host and parasite, but hardly so for 

games between owner a.nd intruder or parent and offspring, where one individual will find 

itself sometimes in one role and sometimes in the other. It is also plausible that for male- 

female or worker-queen conflicts, the genetic programs for the two roles are linked. In 

any case, most of the static game theoretical models assume conditional strategies (for 

example: if male, be a philanderer; if female, be coy). In the present paper we discuss the 

corresponding dynamica.1 fea.tures. 

In section 2 we describe the dyna.mics in the simplest case (two roles with two alternatives 

each), in section 3 we a.pply this to some outstanding examples of asymmetric games 

in biology (bat,tling spiders, bluffing shrimps and coy birds), and in section 4 we add a 

recombination term which reduces the dynamic degeneracy. Of special interest are games 

with cyclic structure, which exhibit a novel type of 'semi-stable' heteroclinic cycle and a 

'zip'-like bifurcation from stability to instability along a line of equilibria. 

2. T h e  model  

In the simplest possible case, there are two roles I and 11 with two strategies each: el 

and e2 for I and fl and f2 for II. Any individual will find itself with probability p in role 

I and 1 - p in role II. (This role can change during its life history, e.g. child and parent 

or owner and intruder, or it can stick for life, like male and female in most cases.) Within 

the game considered, individua.1~ in one role ase assumed to  interact only with those in the 

other role. 



The payoff for role I (resp. 11) is given I)y E (resp. F):  

B ,  for exa.mple, is the expected payoff for Rn el-strategist meeting an f2-player, etc . . . 
Thus we are c1ea.ling \vit,h bimxt-rix games. 

The population will consist of four 'I~chavioural' types: II = el f l  (i.e. play el if in role 

I and fl if in role 11), I2 = e2i l ,  I3 = el f2 and I4 = eZf2, with frequencies xl to 54, 

respectively. The sta.te of t,he population is given by a point in the simlpex 

Let r be the sequence of four edges connecting the corners II to I 2  to I4 to I3 and back 

to I* again. Each edge connectas t\vo types ilsing the same option in one role and different 

ones in the other. Generally, one of the two alternatives is the better one, and we orient 

the edge accordingly. This yiclcls essentially to the following orientations of r : 

According to a. basic result (Sc1t.cn lC)SO), an asymmetric ga.me has no mixed ESS (evo- 

1utiona.rily stahlc st,ra.t.egy). It is easy to see t1ia.t type Ij is an ESS if and only if both 

a.djacent edges point to~va.sds it,. Tliiis (a) and (11) ha.ve one ESS and (c) a pair of opposite 

ESSs while the cyclic s t r~c t~ure  of ((1) a.llo\vs no ESS at all. We shall see presently how the 

dynamics Rgrees with this static classifica t,ion. 

The pa.yoff for type I, against Ij is given by p(1-p)A.f,j, with Mij  given by the 4 x 4-matrix 



(For example A424 is given as follolvs. IYith probability p ( l  - p) the 12-player is in role I 

and the Id-player in role 11: the payoff for e2 against f2 is D; with the same probability 

p(1- p) the 12-player is in role 11 and the 14-player in role I, and in this case the 12-player 

obtains b; with probability p2 + (1 - p)2 both players are in the same role and hence do 

not interact .) 

Thus the game is described now by a single matrix. The payoff is the increment in repro- 

ductive value. According to the usual game dyna.mics (Taylor and Jonker (1978), see also 

Hofba.uer and Sigmund (1988)) we assume that the rate of increase of each type is given 

by the difference between its payoff a.nd the avera.ge payoff in the population. This yields 

with ~3 = C x ~ ( M x ) ~ .  (We have dilvided t.he right hand side by p(l -p), which corresponds 

to a. cha.nge in t,ime scale.) The st.a.te spa.ce S4 and its boundary (consisting of the faces 

where xi = 0) are invariant'. From now on we consider only the restriction of (1) to S4. 

Subtra.cting m.i, from the i-t,h column of A l  does not affect the dynamics. Hence we may 

use without restriction of generality the ma,trix 

One checks immediakely that the ratio is an invariant of motion, i.e. remains constant 

under (1). Ea.ch equation XI  x4 = Kx2x3 (for I '  > 0) defines a saddle-like surface WK in 

the interior of the sta.te spa.ce S4. It is bounded by the four edges belonging to I'. 

Of special interest is the case I< = 1. The surfa.ce Wl corresponds to the Wright-manifold, 

the surface of linkage zero in the well-known two-locus, two-alleles equation from popula- 

tion genetics. In our setup, ~ 1 x 4  = ~ 2 x 3  means that the strategies in role I and role 11 

a.re independent. lVl divides S4 into two halves. 



The equilibria. of (1 )  are givcil by (Alx), = A? tvhenever xi > 0. In intS4, this means 

(A4x)l = . . . = ( A ~ X ) . ~ .  Toget.llcs \vit.l l 2.1 + . - .  + zd = 1, this yields a system of 4 linear 

equakions \vhicl~ is in gcncsal nf s n ~ ~ k  2. Tllc ecluations ( A ~ x ) ~  = ( A ~ X ) ~  and ( M x ) ~  = 

( A ~ x ) ~  iinply 
S S 

5 1  + r 2 = -  n + s  5 1  + 5 3  = - 
r + s  

if the denominators clo nnt vanish. Thcsc t.\vo equa.tions determine a line of fixed points, 

which can be \vrittcn as 
r, = 717; + / I  ( i  = 1,4)  

with 

111 = 
1 

( R  + S)(7- + s)  
(Ss,  Sr, Rs, Rr).  

We note that ~n satisfies 11711774 = 1172117~ aild that the line of fixed points given by (2) 

intersects intS4 if ancl only i f  n1 E l l r l ,  i.e. if ancl only if RS > 0 and rs > 0. Thus either 

all of the invariant surfaces lV1,. (0 < I< < m) contain a fixed point or none does. The 

p-values for which (2) then yields a point in intS4 are those satisfying 

One can conlpute thc Jecobian and hcncr: the eigenvalues of (1) a t  the interior equilibria. 

One eigenvalue is always 0, of coiii.sc. \\lc list IIO\\~ a brief classifica.tion and deal subse- 

quently with some l~iologicallg sclcva.nt. esanlples. Essentially, the a.rrows of the diagrams 

in Fig. 1 will coi.respond t.o nsllit,s of (1) alollg the eclges of r. 

(A) No equilibrium in the interior. Then all orbits converge to  the boundary, so that the 

dynamics is reduced to a. simple lower dimensional one. Actually, i t  is easy to check that 

generically, t4hcrr exists a. singlc COSIICI. of S., at.t.sactillg all interior orbits. This corner 

corresponds t.o a11 ESS, alld I I C ~ ~ C C  \VC ol>t.nin cases (a) or (b) of Fig. 1. Thus the outcome 

is fixation of a single t.ypc. \I7c call this the case of global stability. 

(B) A line of erluilil>si:~ in t . 1 1 ~  illt.csios, a i ~ d  R7. > 0. Ee.ch equilibrium is a saddle on the 

corresponding i111-asia11t. s~rfa.ce. A s i l s f i l ~ ~  S containing the equilibria and two corners 



divides S4 into two 1xlrt.s. 111 eil~ll, t.1ic1.c is E\ corner at.tractiilg ~1.11 orbits, while the orbits 

in S n S4 ~on\~el-gc to int,criol- c(jllilil>ria. Tliis is the case of b is tab i l i t y :  up to a set of 

measure zero, all i i i it.in1 coiitlitioiis 1c;ltl t.o one of two opposite corners. These corners are 

ESSs. This cori~esl,onds to (c) i l l  Fig. 1. 

(C) A line of equilil>ria in the intcrior, ant1 Rr < 0. This is the cyc l ic  case: II beats 12, 

which bcats Id, \\:Iiich bcats 13, u.llic11 i n  t,rrrn beats I] (or the other way round). The 

Jacobian at t.he inncr e<l~lilil,riii lias a pair of coinplex eigenvalues, which corresponds to a 

rota tionnl componcn t on t.hc iii\-nria~lt~ slri fncc ll'li.. 

011 14'1, the cigcn\.nll~cs i11r l)~ltcl,\. i i i i i~~iiiary. Tliere exists a further invariant of motion, 

nainely 

Slog(2.1 + 3s2) + Rlog(a.3 + a., ) - s log(al + r3)  - r log(xz + x4) 

(Actually, tliis is a Hamiltoninn on llTl ). Thlls l,lrl consists of periodic orbits. For I< > 1 

the fised point is n spiral sinl;, ant1 for I< E ( 0 , l )  a spiral source (or vice versa), provided 

R+ S + r + s # 0. TIi11s if olic t,rn\-cls nlolig t lie line of equilibria, there occurs a degenerate 

Hopf bif~~rcation as one ciosscs stnl~ility cllanges into instability. This is somewhat 

similar to the z tp -h i j~ r rcn l i on  stl~tlictl 1 ) ~ .  Fnilia.~ (1984) in ecological models although there 

is no parameter hc1.c to ~ l i o \~c  t.lic zip. 

We sho~v in t l ~ c  apl)c~idis t l i i ~ t .  of f  11', , t.1ict.c is no periodic orbit. The edges are orbits 

converging t.o one coi~icr as f + -m i l ~ l t l  t.o tlic ilest one as t + +oo. Together, they form 

a heteroclinic cycle. In oiic half of intS,r, all or1)it.s spiral away from the inner equilibria and 

towards r. In tllc ot,llc~* half, thq-  spirnl away from l? and towards an interior equilibrium 

(see Fig. 2). 

In the class of cr.11 c1yna.illica.l syst.eins, sircll a. beha.viour is structurally unstable to a high 

degree: (a.) the sadtllc coi~ncct.ioi~s - o1.l)it.s 1ea.tling froin one sa.ddle-type equilibrium to an- 



other - correspond to intersections of stable and unstable manifolds whichare not transver- 

sal, which is a non-generic situat,ion; (b) the constant of motion foliating the state space 

into invariant surfaces is nongeneric too; (c) the line of equilibria is a degeneracy, since 

usually equilibria are isolated; (d) the Hopf bifurcation (which leads to no limit cycle) is 

also degenerate, since at the critical parameter value K' = 1 there occurs a constant of 

motion. Nevertheless, this heteroclinic cycle which is partly attracting and partly repelling 

occurs in a perfectly robust way within the dynamics of asymmetric games: a small change 

in parameters will leave the behaviour unaffected. 

The outcome is highly unpredictable. In one half of the state space, the evolution tends 

towards an equilibrium with all four types present. However, this equilibrium is only 

neutrally stable, as  it is imbedded within a line of equilibria. Under random fluctuations, 

the state will drift along this line and eventually enter the other half of the simplex. 

There, the dynamics will lead to\vards r .  The state will hover close to one corner, then 

abruptly switch along an edge to the next corner, stay there for a much larger time, switch 

rapidly (and without exterior cue) to the next one etc . . . in a 'cycle' with ever increasing 

period. Since the state is close t<o r, two or three of the types are present in only a minute 

amount. Eventually, one of them will be wiped out by a random fluctuation. Then, the 

cycle is broken and fixation at one of the corners occurs (it is impossible to predict which 

one). A fortunate sequence of fluctuations (due to mutation or migration for example) can 

reintroduce some of the missing types, or even all of them; it could even happen that this 

leads to a state in that half of S4 where convergence to an interior fixed point occurs, and 

the whole evolution is repeated again. But basically, the outcome is fixation of a randomly 

chosen pure type. 



( A )  Battling spiders 

Conflicts between the owner of a territory and an intruder have been analysed by Ham- 

merstein (1981), Maynard Smith (1982), Maynard Smith and Parker (1986) and others, 

and exemplary field studies of territorial fights of funnel web spiders have been carried out 

by Riechert (1978). Let role I be that of the owner and role I I  that of the intruder. Both 

contestants have the option to escalate (el resp. f l )  or to  stick to ritualized fighting. We 

denote by -D the cost of an injury and by -T that of a drawn-out ritualized conflict. For 

the owner, the probability of sinning is $ in a ritual fight and q in an escalated battle. By 

Vl and V2 we denote the value of the t,crritory for the owner resp. for the intruder (they 

need not be the same). The payoff matrices are 

Then R = ( I  - q)D - qVl, r = qD - (1 - q)V2, S = 2 + T > 0, s = + T > 0. Interior 

fixed points exist iff R > 0 a.nd r > 0. In this case the fixed points are saddles. We have a 

bistable case with two ESSs (the bourgeois stra.tegy - owner escalates and intruder flees - 

and the opposite, pa.radoxica1 strategy). 

(B )  Blufing ~ h r i m p s  

This example has been proposed by Gardner a.nd Morris (1989) to describe the territorial 

behaviour of a mantis shrimp, which lives a.nd hides in cavities. These crustaceans undergo 

periodically a stage during which their exoskeleton is renewed. Such newly molten indi- 

viduals a.re highly vulnera.ble to conspecific attacks. Nevertheless, they display sometimes 



a threatening behaviour to\vards intruders, leaning out of their cavity and raising their 

raptorial appendage in a so-called meral spread ( a 'bluffing' signal similar to the shaking 

of a fist). If the intruder is in an intermolt stage, it would win an escalated fight, but does 

not know the actual state of the owner ( P  is the probability that it is newly molten). 

In the Gardner-Morris example, role I is: owner in a newly molten stage, and role 11: 

intermolt intruder. The owners stra.tegies are el (to flee) and e2 (to bluff), while the 

intruders alterna.tives are fl (to attack) or f2 (to withdraw). If V denotes the value of the 

territory, - B the cost of bluffing (1ea.ning out of the cavity is not without danger) and -C 

the cost of losing a fight, the payoff mat,rices are 

Thisyields R =  -B(1-P)  < 0 , r  = C P  > O , S =  ( B - V ) ( 1 - P ) a n d s  = V(1-P)-CP,  

and hence R + S + r + s = 0 - a degenerate ca.se which displays an extra constant of motion 

(see appendix). If we assume B < 1' and C P  < V( l  - P) ,  so that S < 0 and s < 0, there 

is a line of fixed points in int S4. All other orbits in int S4 are periodic. 

(C) Coy bird3 

A pretty example relat,ed to the que~t~ion of parental investment has been proposed by 

Dawkins (1976). Some (hypothetical) male birds are faced with the temptation to desert 

(leaving the female with the task of raising the brood) and to found a new family somewhere 

else. The counterstrategy of the fema.les is to insist upon a long engagement. It would 

then be too late in the season, for the ma.le, to start it all over again, and much better to 

stay a.nd help with the offspring. The t\vo roles a.re female ( I )  and male ( I I ) ;  the female 



can be coy, i.e. insist upon a long engagement before copulation (e l ) ,  or it can be fast (e2). 

The male can be a philanderer, i.e. not prepared to put up with a long wait (f i), or it 

can be faithful, i.e. willing to accept a long engagement (f2). If G denotes the increase in 

fitness (for each parent) corresponding to the successful raising of a brood, -C the cost of 

parental investment (which can be shared, or borne entirely by the female), and -E the 

cost inflicted by a long engagement on each partner, then the payoffs are given by 

0 G - C - E  
E =  ( 2 c 

G - C  G-- i -  ) 

This yields R = G - C,  S = -E  < 0, a = 5 > 0 and r = G - - E. In order to 

have fixed points in int S4, we must have 0 < E < G < C < 2(G - C). In this case 

R + S + r + s = 2(G - E) - C > 0. The fixed point on l.lrI,- is a spiral sink for K > 1 and 

a spiral source for 0 < I< < 1 . This is an example with cyclic dynamics. 

In this final section we modify t.he dynamics (1) by adding recombination: 

Here €1 = -62 = -63 = €4 = 1, r > 0 is the recombination fraction and D = ~ 1 x 4  - 32x3 

the linkage disequilibrium. This syst.em on Sq describes a two-locus two-allele model, where 

the two loci correspond to the two possible roles and the two alleles determine the strategy 

played in that role, with additive cont.ributions of gametes to fitness. 



Then for Z = I' we have 
2 1 2 3  

which shows tha.t Z -t 1 dong all solutions in int S4.  Hence the Wright manifold Wl = 

{D = 0) = {Z = 1) is globally a.ttra.cting for the system (3), while the other manifolds 

WK are no longer invariant. 

The dynamics on TVl is the same as before and its expression can be simplified further: If 

x = x1 + 2 3  denot.es the frequency of el and y = x l  + 2 2  the frequency of f l ,  then on Wl 

we have x l  = x y ,  x2 = (1 - z)y, .  . . and therefore 

Hence the dyna.mics on TV1 coincides wit.h the dyna.mics for bima.trix games introduced by 

Schuster a.nd Sigmund (1981) and studied further in Schuster et al. (1982) and Hofbauer 

and Sigmund (1988), ch.17 and 27. 

Appendix 

Using the transformation int S4 -t int IR:, x e y, where y,  = 3 2 = 1,. . . , 4  we write 
I 4  ' 

the rep l i do r  equa.tion (1 ) as Lot.ka.-1'01 terra, equa.tion 

The line of fixed points is given by the equa.tions r y l  - sy2+ry3  = s and R y l  + R y 2  - S y 3  = S. 

H = log - is an invariant of motion, i.e. yl = X y 2 y 3  ( K  > 0) define invariant surfaces 
Y2 Y3 

wK in int R:. 



Therefore we ca.n study the dynamics on these surfaces and reduce the system to two 

dimensions: 

For K = 1 we obtain 
' j2 = y2( 1 + 212)(s - ry3) 

' j 3  = y3(1 + y3)(S - Ry2) .  

Hence the fixed point on l i ~ ~  is given by F = (e, g, :) (from now on Rr # 0) and the 

line of fixed points ca.n be written as 

This line intersects int IR: iff RS > 0 and rs > 0. 

The Ja.cobian of ( A l )  a t  t,he fixed poii~t F = ( 2 j 2 , i j 3 )  is given by 

We note that 
2 + (Ss - Rr)X K =  ( 6  + r ( R  + S)X) ( f  + R(r  + s)X) ' 

A direct computa.tion yields 

and 
Ss 

det J = - ( R  + S) ( r  + s ) [Rr (Ss  - R ~ ) X ~  + 2SsX + -1. 
Rr 

It is easy to check that det J does not change its sign along the line of fixed points. 



Equation ( A l )  can be writt,en as 

After dividing the right-hand side by y2y3(1 + y2 + y3 + I (y2y3) - which does not change 

the orbits - we obtain 

The divergence of this system is given by div ( i2,  c3)  = - ( R  + S + r  + s ) ( K  - 1) 

( 1  + Y 2  + Y 3  + K y 2 ~ 3 ) ~  ' 

If K = 1 (* X = 0 )  or R + S + r  + s  = 0  (these are the cases for which t r  J = 0 )  the 
aH . aH system is divergence-free and hence is Han~ilt,onian, i.e. of the form y2 = --, y3 = - 
ay3 ay2 

The Ha.milton function H can be ea.sily computed to: 

( 1 )  h'=1 : H = S l o g ~ : ! - ( R + S ) l o g ( l + y : ! ) - s l o ~ ~ 3 + ( r + s ) l o ~ ( l + ~ ~ )  

(2) R + S + r  + s  = 0  : H = Slog 3 2  - slog y3 + ( r  + s )  log(1 + y:! + y3 + Ky2y3)2  

I r e  note, that H is a constzint of motion. Therefore the fixed point is either a saddle or 

surrounded by periodic orbits. 

If K # 1 and R + S + r  + s # 0  then div (lj2, y3 ) is strictly positive or strictly negative, 

having the same sign as tr J. Hence - by the Theorem of Bendixson-Dulac - there does 

not exist any periodic orbit on a T K .  

The following classifica.tion of the fixed points in int S4 characterises also the global dy- 

namics on each surface 'I@,,-: 

If Rr > 0 then det J < 0  a.nd all fixed points a.re saddles. 

If Rr < 0 then det J > 0  and we obt.ain: 
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R + S + r + s > O  

R + !? + r + s = 0 
R + S + r + s < O 
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